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Abstract
Isolated populations are usually subject to low fitness and reduced genetic diversity, both of which may 
negatively affect their survival and adaptive potential. Hence, these issues cannot be neglected when plan-
ning conservation actions for isolated populations. The Italian population of Cistus laurifolius subsp. lau-
rifolius is extremely isolated. Furthermore, it is affected by fragmentation, being constituted by a single 
larger subpopulation, surrounded by three much smaller subpopulations, a few hundred metres to a few 
kilometres apart. In order to fill gaps in demographic and genetic knowledge concerning the Italian popu-
lation, its area of occupancy, size, age-stage structure and phenology were investigated and its reproductive 
fitness, pollination strategies and genetic variability were assessed. The population was inferred as fully 
xenogamous and showed good reproductive performance. Despite this, its genetic variability was low and 
it showed relatively high levels of inbreeding depression (FIS), seemingly not affected by sub-population 
size. These results suggest that the Italian population recently suffered fragmentation and reduction in size. 
The low genetic diversity observed could be explained by the high percentage of mature individuals found 
in the population, possibly established before fragmentation. For these reasons, the Italian population of C. 
laurifolius subsp. laurifolius should be monitored and concrete actions aimed at its conservation planned.
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Introduction

The knowledge of relationships amongst population size, age-stage structure, fitness 
and genetic diversity is of crucial importance in plant ecology and conservation, in or-
der to gain an insight into population dynamics and evolutionary potentialities (Stock-
well et al. 2003; Rodriguez-Perez 2005; Leimu et al. 2006).

Population size strongly affects local adaptation (Leimu et al. 2008), whereas popu-
lation structure can influence breeding systems and, eventually, reproductive outcomes 
(Carta et al. 2016a). Population dynamics are usually age-stage-dependent and related 
to the survival potential of a species (Harper 1977).

Small outcrossing plant populations may suffer disadvantages due to the Allee ef-
fect, i.e. an individual fitness reduction caused by a decrease in population size/density 
(Forsyth 2003). Populations with a low density may be affected by an insufficient 
pollinator service and consequently express a reduced fruit and seed set (Kunin 1997; 
Forsyth 2003; Ashman et al. 2008).

According to Ghazoul (2005), the vulnerability of plant species to the Allee effect 
depends upon their mating system. Self-incompatible species are more likely to experi-
ence pollen limitation than self-compatible plants, as the former cannot compensate 
for reduced pollinator services through selfing (Aizen and Feinsinger 1994; Knight 
et al. 2005; Xia et al. 2013). In addition, when peripheral and isolated plant popula-
tions (PIPPs) (Abeli et al. 2009) display reduced genetic variability, they may fail to 
effectively cope with environmental changes, especially in the light of dramatic shifts 
imposed by global climate change (Willi and Hoffmann 2009, Hoffmann and Sgrò 
2011). The Italian peninsula hosts several examples of such populations, highlighting 
the importance of case studies for planning proper conservation actions (Gargano et al. 
2007, 2009; Rossi et al. 2009; Carta et al. 2016b; D’Antraccoli et al. 2016).

The laurel-leaved rock rose, Cistus laurifolius L. subsp. laurifolius, can be regarded 
as a notable case for studying relationships between genetic diversity and conservation 
in the context of PIPPs. This species shows a distribution scattered across the Mediter-
ranean, the main populations being located in the Iberian peninsula and south France 
in the west and Anatolia in the east (Fernández-Mazuecos and Vargas 2010). In be-
tween, C. laurifolius survives in a single population in Italy, near Santa Brigida village 
(Tuscany) (Roma-Marzio et al. 2016a, 2016b and literature cited therein). A single 
eastwards migration event may have been the source of a recent dispersal of the species 
from putative refugial areas in the western Mediterranean (Fernández-Mazuecos and 
Vargas 2010). According to the latter authors, narrow ecological requirements (altitude 
and edaphic conditions) and low germination rates may explain the current distribu-
tion pattern of this species.

No information about the genetic diversity, demographic structure and reproductive 
traits is available for the Italian population of laurel-leaved rock rose. This population 
has been considered as a relict, resulting from fragmentation (Dansereau 1939; Rizzotto 
1979; Fernández-Mazuecos and Vargas 2010), due to the stenoecy of this species (Riz-
zotto 1979). The dramatic reduction of the Italian population during the last centuries 
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was also determined by human impact (Astuti et al. 2015; Roma-Marzio et al. 2016b). 
According to the latter authors, two out of five sub-populations are much depleted and, 
taking into consideration the threats recorded in the area, this taxon has been evaluated 
as Vulnerable at Regional level, according to the IUCN criteria (IUCN 2014).

The aim of this study is to accumulate information useful for the conservation of 
this species, including: i) area of occupancy of the Italian population, ii) number of 
immature, virginile and mature individuals, iii) phenology, iv) reproductive fitness, v) 
pollination strategies and vi) genetic variability. The obtained results will be a frame-
work to design a conservation programme for the species.

Methods

Study species

Cistus laurifolius L. subsp. laurifolius is a shrub with large, white, hermaphrodite flow-
ers, pollinated by generalist insects (e.g. beetles, bees and flies), flowering from May to 
June (Astuti et al. 2015). This taxon has relatively superficial roots and nutrient-poor 
leaves, mainly adapted to oligotrophic and degraded soils, as other Cistaceae (Moro 
et al. 1996). Cistus laurifolius typically occurs in open and dry habitats of non-coastal 
Mediterranean areas (Rizzotto 1979; Grossoni and Venturi 2009; Roma-Marzio et al. 
2016b). It shows relatively small seed mass (about 1 mg/seed), a feature related to easi-
er penetration and accumulation of seeds in the soil (Fenner 1985; Thanos et al. 1992). 
Seed dispersal is seemingly barochorous (Thanos et al. 1992) but, despite this feature, 
long-distance dispersal events have been documented in the genus (Rizzotto 1979).

Concerning the native geographic distribution, C. laurifolius occurs in the western 
(Morocco, Portugal, Spain, France) and eastern Mediterranean basin (north-eastern 
Greece and Turkey). An isolated population is found in Central Italy (Tuscany) (Warburg 
1968; Rizzotto 1979; Fernández-Mazuecos and Vargas 2010, Dimopoulos et al. 2013).

Study area

The only Italian population of Cistus laurifolius L. subsp. laurifolius is located in Tusca-
ny, near the village of Santa Brigida (Firenze). The mean annual temperature and mean 
annual rainfall of the area, measured between 1992 and 2010 by a thermopluviomet-
ric station located in Pontassieve (WGS84: 43.812324, 11.399167; 120 m a.s.l.) are 
13.7°C and 856.2 mm, respectively (http://agrometeo.arsia.toscana.it/).

With the exception of a single individual surviving in the near proximity of the vil-
lage of Santa Brigida, the population is fragmented into four sub-populations (Astuti 
et al. 2015; Roma-Marzio et al. 2016b) (Figure 1). Three of them (C5, D and FOR 
in Figure 1) are located in an open habitat (garrigue) dominated by Cistus salviifolius 
L., Erica arborea L., E. scoparia L. subsp. scoparia and Cytisus scoparius (L.) Link subsp. 

http://agrometeo.arsia.toscana.it/
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Figure 1. Distribution map of the Italian population of C. laurifolius L. subsp. laurifolius. Yellow symbols in-
dicate the location of each sub-population. Circle size is proportional to the area occupied by the sub-popula-
tions of Fornellaccio (FOR), Fontassenzio (D) and west of Fornellaccio (C5). The yellow star, not proportional 
to the area of occupancy, refers to the small sub-population of Masseto (MAS). The exclamation mark (bottom 
right) indicates the single individual surviving in the near proximity of the village of Santa Brigida (not in-
vestigated in this study). In the top left corner, the location of the study area (red square) in Italy is indicated.

scoparius. The remaining one (MAS in Figure 1) is located in the underbrush of a Pi-
nus nigra L. subsp. nigra plantation, together with sclerophyllous vegetation, mainly 
composed of Cistus salviifolius L., Quercus ilex L. and Rubus ulmifolius Schott (Roma-
Marzio et al. 2016b).

This fragmentation has most probably been caused by human induced landscape 
transformation, as is suggested by the ongoing disappearance of the sub-population in 
the near proximity of the village of Santa Brigida and by the occurrence of buildings 
(e.g. farms) and a network of roads surrounding the population (Figure 1).

Population size and structure

To estimate the population size (number of individuals), its density and demographic 
structure, an evaluation of the area occupied by each sub-population was carried out. 
To this end, preliminary data published by Grossoni and Venturi (2009) were verified 
and adjusted by field surveys, using a GPS receiver. Thereafter, each sub-population’s 
area of occupancy was determined within a GIS environment (QGIS software v. 2.18; 
QGIS 2016), by delimiting a minimum convex polygon. All individuals were counted 
in the smaller sub-populations (C5, D, MAS), while, for the largest sub-population 
(FOR), all the individuals occurring in fifteen randomly sampled 10 × 10 m plots were 
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counted. The number of individuals in FOR (IFOR) was estimated according to the fol-
lowing formula: 

=  ×
⁄  

1
 ∑

= 1

 

where Ip is the total of individuals occurring in all the plots, AFOR is the total area 
occupied by the sub-population FOR and Ap is the sum of the areas of each plot 
(1500 m2).

The age in shrub plants is hardly detectable and plant growth is highly depend-
ent upon environmental and ecological parameters (Chapman 1986). Therefore, to 
describe the demographic structure of each sub-population, three practical “age-stage” 
classes have been arbitrarily selected, based on the presence/absence of flowers and the 
number of leaves. According to the terminology proposed by Gatsuk et al. (1980), the 
three classes were defined as following: class I) immature plants (lacking flowers, show-
ing less than six leaves and with a plantlet-like appearance; class II) virginile plants (lack-
ing flowers, but showing more than six leaves; class III) mature plants (showing flowers).

It was not possible to take into account the very small and ephemeral cotyledon phase 
(seedling), due to difficulties in detecting this stage in the soil and leaf litter and also because 
its presence could be easily affected by exceptional weather conditions (Alonso et al. 1992).

Reproductive fitness

For each sub-population, reproductive fitness was evaluated by means of seed set (num-
ber of seeds/number of ovules) and seed mass. The number of ovules was averaged on 
ten randomly selected flowers in each sub-population (for a total of 40 flowers). The 
ovaries were dissected along their septa using a razor blade in order to count the ovules 
under a 60× magnification stereomicroscope.

Since no difference was found for mean ovule numbers amongst sub-populations 
(ANOVA, p > 0.05), then the mean ovule number at population level (94.72) was used 
as the reference to calculate the seed set for all sub-populations. In the case of single fruits 
showing a seed number exceeding the mean ovule number, a seed set of 100% was assigned 
by default. To calculate the seed number, 50 fruits (capsules) were randomly collected for 
each sub-population and the seed number was counted for each capsule. Aborted (i.e. 
showing a seed-shape, but lacking embryo) seeds were not taken into account. To evaluate 
the seed set, the data were averaged at the sub-population level as follows:

=  ×
⁄  

1
 ∑

= 1

 

where n (=50) is the number of sampled fruits for each sub-population and x is the 
seed set calculated for each fruit.

To evaluate the seed mass, ten replicates, each consisting of a group of 50 randomly se-
lected seeds, were weighed (± 0.001 mg accuracy), for a total of 500 seeds per sub-population.
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Floral sex allocation

To characterise the floral sex allocation and to infer the breeding system of the species 
at the population level, flowers were collected at an early developing stage (showing 
mature, but still not-dehiscing anthers), in order to evaluate the flower biomass (mean 
dry weight) and the mean number of pollen grains produced per flower (P).

According to the regression formula proposed by Herrera (1985), the dry flower 
weight was used as an indirect measure of the daily nectar secretion rate (Bosch 1992). 
Dry weight was calculated on 34 flowers (ten from the sub-population FOR, ten from 
C5, ten from MAS and four from D). After their collection, the flowers were dried at 
60°C for 24h and then weighed (± 0.001 mg) (Kay and Picklum 2013).

The total pollen production per flower was estimated according to the dilution 
method proposed by Galloni et al. (2007). Pollen grains were estimated on seven 
flowers (two from the sub-population FOR, two from C5, two from MAS and one 
from D). Anthers were taken from fresh flowers and placed in vials with 1 ml of etha-
nol/glycerinated fuchsine-glycerol solution (3:1). For effective pollen release, vials 
were sonicated for 1 min at 14 kHz using a Sonoplus Ultrasonic Homogeniser GM 
2070. A known volume (1 µL) of suspension was mounted on a microscope slide 
within 10 seconds from sonication, to guarantee the homogeneity of suspension.

Pollen grains were then counted using a light microscope (250× magnification) 
and recorded with the help of a manual cell counter. The number of pollen grains was 
finally multiplied by the dilution factor and then by the number of anthers to obtain 
the total number of pollen grains estimated for a whole flower. Finally, according to 
the values indicated by Cruden (1977), the P/O ratio was used to infer the breeding 
system of the species. For the number of ovules, the same mean value already used for 
the seed set was referred to, as explained in the previous section.

Statistical analysis of demographic structure and reproductive traits

To evaluate the overall effect of three single predictors (logarithm of area of occupancy; 
sub-population density and % of adults) on the seed set, each of them was fitted with 
a single Generalised Linear Model (GLM), with a logit link function and a binomial 
error structure, followed by a likelihood test. The logistic regression was selected since 
the seed set is a binomial phenomenon.

The values of the area of occupancy were subjected to logarithmic transformation 
to reduce the large differences amongst sub-populations.

Differences in seed mass, flower mass and ovule number amongst sub-populations 
were tested by means of an ANOVA test, followed by Tukey’s pairwise comparisons, 
after checking normality and homoscedasticity of the data. Differences in seed set 
amongst sub-populations were tested by means of χ2 test.

For all statistical tests, significance was accepted at p ≤ 0.01. All analyses were per-
formed using R 3.3.1 software (R Core Team 2016).
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Microsatellite markers

Microsatellite markers have been developed according to Albadejo (2010). About 
1500 clones from a non-enriched genomic library were sequenced. The sequenc-
ing reads were assembled with CodonCode Aligner in 1348 unique sequences. Se-
quences were checked for the occurrence of di-, tri- and tetra-nucleotide repeats 
with the online software Sputnik (available at http://wheat.pw.usda.gov/ITMI/
EST-SSR/LaRota). Although microsatellite motifs were detected in 25 sequences 
(1.8%), ten were discarded as the microsatellite motifs were too short, nucleotide 
repeats were too close to the vector for primer design or the clones showed high 
sequence homology. Subsequently, 15 primer pairs were designed by using Primer3 
software (Rozen and Skaletsky 2000). In a preliminary screening of the markers’ 
variability, 30 individuals from two sub-populations were examined. Out of the 
15 primer pairs, nine were discarded, as they failed to amplify, produced multi-
banding patterns, were monomorphic or showed too pronounced stuttering. The 
presence of null alleles in the remaining six markers (Suppl. material 1) was ex-
amined following the Expectation Maximisation (EM) algorithm (Dempster et al. 
1977) using FREENA (Chapuis and Estoup 2007). The estimated frequency of null 
alleles ranged from 0.13 to 0.23 with the exception of cislau11 (frequency = -0.01). 
Due to the excess of null alleles (frequency = 0.78) the marker cislau5 was excluded 
from further analyses.

Genetic diversity analysis

The total DNA from 189 plants, sampled from the four sub-populations, was iso-
lated using the Qiagen DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) from 
80–100 mg of leaf dry tissue. Amplifications were performed by polymerase chain 
reaction (PCR) in 10 µL volumes, containing 10-50 ng of template DNA, 1× reaction 
buffer (200 mM Tris-HCl, 500 mm KCl, pH 8.4; Invitrogen), 0.5 U of Taq polymer-
ase (Invitrogen), 0.5 µL of 1% W-1 solution (Invitrogen), 2 mm of MgCl2, 1 µm of 
each primer, 60 µm of dNTP mix.

Reactions were performed in a Gene Amp PCR system 9700 (PE Applied Biosys-
tems), with the following programme: an initial denaturation step of 3 min at 94° C, fol-
lowed by 10 touchdown cycles of 30 s at 94 °C, 40 s at 60 °C (1 °C lower per cycle) and 
30 s at 72 °C and 25 cycles of 20 s at 94 °C, 20 s at 50 °C and 30 s at 72 °C with a 
final extension step of 8 min at 72 °C. A final extension of 6 min at 72 °C was per-
formed in all programmes. Amplified fragments were run in an ABI 3130xl automatic 
sequencer (Applied Biosystems). Electropherograms were analysed using GeneMapper 
version 4.0 (Applied Biosystems). Linkage disequilibrium between loci and deviations 
from Hardy-Weinberg (HW) expectations were tested using Fisher’s exact tests based 
on Markov chain procedures in GENEPOP ver. 3.4 (Rousset 2008). Basic statistics 
were calculated using the software GENALEX 6.2 (Peakall and Smouse 2006), to 

http://wheat.pw.usda.gov/ITMI/EST-SSR/LaRota
http://wheat.pw.usda.gov/ITMI/EST-SSR/LaRota
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determine: allele frequencies, mean observed heterozygosity (Ho), unbiased expected 
heterozygosity (He), the number of alleles at each SSR locus (NA), the effective number 
of alleles (NE) and the inbreeding coefficient (Fis). GENALEX 6.2 was also used to 
perform the analysis of molecular variance (AMOVA). Significance levels were deter-
mined using 1,000 permutations. To test whether any of the sampled sub-population 
experienced bottlenecks in the recent past, the Bottleneck programme version 1.2.02. 
(Piry et al. 1999) was used to compute the difference (averaged over loci) between 
actual heterozygosity and the heterozygosity expected for a population in mutation-
drift equilibrium. The Bottleneck software allowed the testing of the bottleneck hy-
pothesis, taking into account two possible models: a stepwise mutation model (SMM) 
and a two-phase mutation model (TPM). The significance of heterozygosity excess 
was determined using the Wilcoxon signed-rank test, which has been demonstrated 
to be the most accurate test in case of both low number of polymorphic loci (< 20) 
and small samples sizes (< 30) (Piry et al. 1999). The genetic structure of the four sub-
populations was analysed by the Bayesian algorithm implemented in STRUCTURE 
v. 2.3.3 (Pritchard et al. 2000), which assigns individuals to a K number of genetically 
homogeneous groups, based on allele frequencies at each locus. For the analyses with 
STRUCTURE, a burn-in period of 50,000 and a posterior number of Markov Chain 
Monte Carlo (MCMC) of 100,000 permutations was used.

Fifteen replications (runs) were performed for each value of K ranging from K = 1 
to K = 10. An admixture and allele frequencies correlated model was used. The most 
likely number of genetic clusters (K) was estimated following Evanno et al. (2005), 
which uses an ad hoc parameter (ΔK) to estimate the rate of change of likelihood values 
amongst successive K values. Ten runs for each simulation were averaged using algo-
rithms found in CLUMPP (cluster matching and permutation programme; Jakobsson 
and Rosenberg 2007) and represented as bar graphs using DISTRUCT (Rosenberg 
2004). The membership probability of each individual in every cluster was assessed by 
the value of Q and each individual was assigned to a specific cluster taking into account 
a threshold of Q > 0.75 (Atiqur et al. 2016).

Results

Demographic structure

The estimated number of individuals within the population was 9,962, occupying an 
area of 86,145 m2. The largest sub-population FOR hosted the vast majority of the 
plants (Table 1). Overall, mature plants appeared in the greatest numbers, followed by 
virginiles and immatures. Percentages similar to the overall values were found in the 
sub-populations FOR and MAS, whereas C5 and D showed a higher number of im-
mature and a lower number of mature individuals. In addition, D showed the highest 
percentage of virginile plants (Table 1).
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Table 1. Demographic structure of the Italian population of C. laurifolus subsp. laurifolius. In square 
brackets: % values of area of occupancy and individuals with respect to the whole population. In round 
brackets: % age-stage classes with respect to the whole number of individuals for each sub-population. * 
= mean value.

Subpopulation Area (m2) Density 
(individuals/m2)

Mature 
individuals

Virginile 
individuals

Immature 
individuals

Total 
individuals

FOR 77,215 
[89.7%] 0.12 8,185 (86.4%) 1,132 (12%) 154 (1.6%) 9,471 

[95.1%]
C5 6,680 [7.7%] 0.05 261 (74.4%) 45 (12.8%) 45 (12.8%) 351 [3.5%]
D 2,100 [2.4%] 0.04 69 (75.0%) 17 (18.5%) 6 (6.5%) 92 [0.9%]
MAS 150 [0.2%] 0.31 40 (85.1%) 6 (12.8%) 1 (2.1%) 47 [0.5%]
Population 86,145 0.11* 8,556 (85.9%) 1,200 (12.0%) 206 (2.1%) 9,962

Reproductive fitness and floral sex allocation

According to χ2 test, the seed set of FOR (mean value 87.5%) and D (mean value 
38.9%) showed the highest and the lowest values, respectively (Table 2). Regarding 
the seed mass, differences were significant only between FOR and MAS, with the lat-
ter sub-population showing the lowest values (Table 2), yet not significantly different 
from C5 and D.

The mean P/O value calculated for the population was 5,138.72 ± 4,310. Concerning 
dry flower mass, no differences were found amongst sub-populations (p > 0.05): the mean 
value for the entire population was 102.05 ± 0.02 mg. According to Herrera’s regression 
formula, the daily nectar’s production was estimated as 5.18 ± 0.78 mg per day per flower.

Concerning factors affecting seed set, a significant positive effect was found of the sub-
population’s area of occupancy, density and frequency of class III (mature plants) (Table 3).

Population genetics

A total of 66 alleles was detected for five loci (Suppl. material 2) in the 189 individual 
genotypes sampled in this analysis. The overall diversity in all sub-populations was very 
low (Table 4); the mean number of alleles per locus (NA) was 3.3 ± 0.5, the observed 
heterozygosity (HO) was 0.25 ± 0.05, whereas expected heterozygosity (HE) was 0.32 ± 
0.06. No sub-population showed a significant excess of heterozygotes compared with 
the equilibrium expectation based on data modelling (one-tailed Wilcoxon signed-
rank test, p > 0.80 for all sub-populations under both the SMM and TPM). Instead, all 
sub-populations showed a significant excess of homozygotes (as indicated by a positive 
FIS), with the exception of MAS, where the FIS value was slightly negative.

Linkage disequilibrium (LD), the non-random association of the alleles at differ-
ent loci, was analysed for all pairs of SSR markers within each sub-population and 
across the whole population. Only one locus (cislau12) showed a significant depar-
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Table 2. Reproductive features of the Italian population of C. laurifolius subsp. laurifolius. For each sub-
population, mean values and standard deviations are reported. Different letters indicate growing ranking 
significant differences amongst groups (ANOVA test for ovule number, seed number and seed mass; χ2 
test for seed set).

Sub-population N. ovules
(N = 10)

N. seeds
(N = 50)

Seed set
(N = 50)

Mass of 50 seeds (mg)
(N = 10)

C5 95.9 ± 27.3a 55.28 ± 37.2b 58.36%b 42.43 ± 1.7a, b

D 100.4 ± 24.7a 36.84 ± 27.0a 38.89%a 43.28 ± 1.5a, b

FOR 102.6 ± 28.0a 82.90 ± 39.5c 87.52%c 44.24 ± 1.4b

MAS 80.0 ± 20.7a 56.96 ± 40.0b 60.14%b 41.15 ± 2.0a

Table 3. Overall effect of the three predictors on the seed set, estimated by three single GLM analyses. 
log(area) = natural logarithm of the area occupied by each sub-population, III% = percentage of the 
class III stage-age individuals, SE = standard error, DE% = percentage of the deviance explained by 
each model.

Intercept Estimate SE p value DE%

log(area) -0.530 0.108 0.007 < 0.01 1.98
Density -0.008 3.031 0.148 < 0.01 3.20
III% -7.154 9.407 0.270 < 0.01 9.19

ture from equilibrium (5% level) in the C5 sub-population. The population structure 
determined by AMOVA showed that approximately 4% of the total variation was 
attributable to variation amongst sub-populations and 96% of the total variation was 
attributable to differences amongst individuals within sub-populations. All pairwise 
FST values differed significantly from zero (p < 0.05), except between C5 and MAS (p 
= 0.252) and D and MAS (p = 0.076). The estimate of overall FST was significantly dif-
ferent from zero, but very low (FST = 0.050; 95% CI 0.022-0.083), suggesting strong 
inter-subpopulation gene flow. Concerning this result, the mean value of NM (number 
of migrants) was estimated to be 7.25. The optimum cluster number inferred from 
the STRUCTURE analysis (Suppl. material 3) was K = 3. Further analyses were per-
formed based on K = 3, to investigate the composition of each individual and each 
sub-population with respect to the three inferred genetically homogeneous groups. In 
agreement with the low levels of genetic diversity, the genetic structure was also very 
weak. The proportion of membership of each inferred genetically homogeneous group 
was, in all cases, lower than 52%; the major component of genetic composition is at-
tributable to the first K group (51%) for D, to the second K group for FOR (41%) 
and to the third K group for MAS (50%) (Figure 2). This result demonstrates that 
each gene pool shows a high degree of admixture, pointing towards extensive gene 
flow or common ancestry.
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Discussion

Demography, reproductive fitness and genetic structure

The survival chance of the Italian population of the laurel-leaved rock rose is most-
ly dependent upon the fate of the largest sub-population (FOR), including the vast 
majority of the individuals. The demographic structure of the population, as well, 
clearly parallels that of the largest sub-population, where a high percentage of mature 
plants and a low percentage of virginile and immature plants was observed (Table 1). 
The sub-populations of intermediate size and low density, namely C5 and D, show 
higher percentages of virginile and immature plants compared to the largest and to the 
smallest sub-populations (FOR and MAS, respectively). Accordingly, C5 and D may 
provide an important source of recruitment, albeit the seed set of these two sub-pop-
ulations was relatively low, possibly due to the Allee Effect. As a consequence, C5 and 
D sub-populations can be regarded as patches of a fragmented habitat, surrounding 
the largest sub-population (FOR). Taking into account the smallest and most isolated 
sub-population (MAS), its peculiar environmental conditions should be underlined. 
As reported by Roma-Marzio et al. (2016b), MAS is subjected to severe threats (e.g. 
canopy closure and alien species) which are significantly affecting its ecological asset. 
Only 40 mature plants are surviving in this sub-population and only one immature 
plant was observed during this survey. Despite the low number of individuals in MAS, 
the seed set value was not low, probably due to the high density of mature individuals, 
as highlighted by the GLM results. Although there are relatively high values of the seed 
set, the low germination rates of this species (Fernández-Mazuecos and Vargas 2010) 
could however represent an additional threat.

According to the categorisation of P/O values made by Cruden (1977), the stud-
ied population seems fully xenogamous. This is also confirmed by the estimated daily 
nectar production which is consistent with a xenogamous breeding system, accord-
ing to the data presented by Bosch (1992). The mating system is reported to have 
a significant impact on the distribution of genetic variability in a plant population 
(Duminil et al. 2007) and this genetic study indicates that 96% of the detected ge-
netic variation is maintained within each sub-population. This value complies with 
that which is expected for an outcrossing plant (Hamrick and Godt 1989). Given that 
outcross seems the only way to produce new individuals in this species, its capability 
to cope with environmental shifts is strictly dependent upon the reproductive fitness 
of mature plants. The number of mature plants and the seed set measured in the 
population are quite high (Tables 1 and 2). In the light of these data, it seems that the 
Italian population of C. laurifolius shows a good reproductive performance. However, 
further investigations on the mating system using molecular markers could provide 
useful information (Glémin et al. 2006).

Compared with values reported for other outcrossing species (HO = 0.63; HE = 
0.65) and for long-living perennials (HO = 0.63; HE = 0.68) (Nybom 2004), these 
results suggest that genetic diversity is low within the population as a whole (mean HO 
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= 0.25 ± 0.06; mean HE = 0.31 ± 0.03). Low genetic diversity is commonly observed 
in endangered and rare species, with a reduced number of individuals in their popula-
tions (Hughes et al. 2003; Zhang et al. 2005), albeit different molecular markers can 
yield different diversity estimates (Nybom 2004). Although there are no concrete ex-
perimental data supporting a bottleneck hypothesis, the low genetic diversity, coupled 
with a relatively high FIS (averaged value over all sub-populations: 0.21 ± 0.08), sug-
gest that the sub-populations could have suffered a reduction in size (Frankham 2005; 
Wright et al. 2009). Furthermore, the loss of habitat and its fragmentation (Ellstrand 
and Elam 1993), as well as multi-generation isolation (Keller and Waller 2002), are 
also known to have significant effects on gene flow and genetic diversity, as a result of 
both drift and increased inbreeding levels (Aguilar et al. 2008). In particular, outcross-
ing species containing most of their genetic variability within sub-populations, are 
subjected to genetic erosion through habitat fragmentation (Frankham 2005). Fur-
thermore, the proportion of short-distance mating events has been shown to increase 
as a consequence of an increased fragmentation process (Ismail et al. 2012).

There was evidence for inbreeding in all the sub-populations with the excep-
tion of MAS: the FIS value of this small sub-population did not differ from Hardy-
Weinberg expectations (Table 4). Although the FIS value of MAS could be partially 
influenced by the low number of sampled individuals (N = 10, however representing 
25% of mature plants), this further confirms the absence of a relationship amongst 
the sub-population size and the inbreeding coefficient, as already shown by other 
authors (e.g. Leimu et al. 2006; Honnay and Jacquemyn 2007; Aguilar et al. 2008). 
Age-structure of a sub-population is known to affect the Hardy-Weinberg expecta-
tions (Jacquemyn et al. 2004), therefore estimates of the inbreeding coefficient such 
as FIS should also be considered with caution. Indeed, this sampling strategy involved 
only adult plants. Although no information is available in literature about the life 
span of C. laurifolius, it is speculated that the oldest individuals possibly established 
before habitat fragmentation (Evanno et al. 2005). This could explain the observed 
absence of effects of the sub-population size on the inbreeding coefficient. In this 
sense, minor sub-populations hosting more virginile and immature plants may play a 
significant role with respect to the survival of the last Italian population of C. laurifo-
lius, despite no genetic differences amongst (mature individuals of ) sub-populations 
were found. The lack of genetic structure could be explained by two main factors 
acting together: (i) a recent fragmentation of the population (FST has been shown 
to respond slowly to the fragmentation process) (Landguth et al. 2010) and (ii) 
xenogamous species behaviour. These two factors might have maintained gene flow 
amongst sub-populations, and gene flow is a very important factor counteracting 
loss of genetic diversity and inbreeding depression. Moreover, the long-living cycle 
of the species could be further delaying the genetic differentiation amongst sub-
populations (Hamrick and Godt 1996; Colling and Matthies 2006).

Gene flow may be insufficient to counteract the effects of drift, especially at low 
levels of population density (Kettle et al. 2003; Rosas et al. 2011). For example, Ismail 
et al. (2012) have shown that pollen dispersal occurs over large distances in highly 
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fragmented agro-forest landscapes. However, as forests become more fragmented, in-
breeding due to non-random mating amongst related individuals, as well as genetic 
drift, are likely to be exacerbated. The low inbreeding in MAS may reflect the mating 
system preceding the fragmentation when the population was more continuous, so 
that extensive gene flow could take place. On the other hand, several additional factors 
could affect the relationship between FIS and population size (Honnay and Jacquemyn 
2007). The absence of homozygotes for rare alleles could bias downwards the FIS value 
in small sub-populations (Young et al. 1999), whereas FIS in large sub-populations 
could be biased upwards as a result of the Wahlund effect.

Whether recent or not, habitat fragmentation is one of the most important fac-
tors invoked to justify the low seed set values found in many natural plant popula-
tions, mostly due to its influence on pollination and genetic erosion (Ågren 1996; 
Young et al. 1996; Severns 2003; Ghazoul 2005; Leimu et al. 2006; Ouborg et al. 
2006; Aizen et al. 2007; Aguilar et al. 2008). Indeed, as demonstrated in other 
species (Honnay et al. 2005), a negative effect of small areas of occupancy on the 
seed set was also detected, as well as a positive effect of plant density. High seed set 
values in all sub-populations point towards a good reproductive performance, but 
no data are available for the effective establishment of seedlings. Probably, the low 
number and density of mature individuals in the sub-population D accounts for 
the lower seed set observed (Allee effect). On the other hand, the high level of seed 
set shown by the large sub-population FOR parallels a low percentage of immature 
and virginile plants. In long-living perennials, the population fitness can be related 
to growth and survival rates which may reduce seed production (Silvertown et al. 
1993, 1996). The low presence of immature and virginile plants in the largest sub-
population FOR may be potentially deleterious for the population as a whole, since 
the lack of recruitment could lead to genetic depletion. In this perspective, immature 
and virginile plants supplied by the sub-populations C5 and D may be crucial for the 
long-term survival of the Italian population of laurel-leaved rock rose. On the other 
hand, a population structure characterised mostly by aged plants, in the worst sce-
nario, may lead to local extinctions (García et al. 1999; Brys et al. 2003; Jacquemyn 
et al. 2003). The smallest sub-population (MAS) may experience such a trend within 
a relatively short period.

Conservation approaches

As population size, breeding system and genetic structure of C. laurifolius in Italy were 
completely unknown, the results of the present study provided relevant new knowledge, 
crucial for designing a programme for species management and conservation. Despite 
habitat fragmentation seeming to have no effect on the reproductive fitness, it is argued 
that this species in Italy could be affected by an ongoing process of population size reduc-
tion, linked to inbreeding depression, loss of genetic variation and fixation of deleterious 
alleles. All these factors play a role in reducing the adaptive potential of a population (Del-
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mas et al. 2014; Theodorou and Couvet 2015). This local reduction and impoverishment 
is congruent with a general range contraction and fragmentation, already highlighted 
in this species by Fernández-Mazuecos and Vargas (2010). Without active conservation 
actions and also taking into account low genetic diversity (Frankham et al. 2002), the 
Italian population of C. laurifolius will face increasing risks of extinction.

Gene flow amongst sub-populations may partially compensate for losses of genetic 
diversity. This could reduce the mating between relatives, avoiding the increase of ho-
mozygosity and inbreeding depression (Hardner and Potts 1995).

To cope with habitat fragmentation, often due to canopy closure, the following in 
situ conservation actions are needed: a) coppicing, to reduce competition and to provide 
adequate light intensity for the seedling growth (Jacquemyn et al. 2008) and b) filling 
the spatial gaps amongst the sub-populations as much as possible, by means of targeted 
translocations, to contribute in maintaining gene flow. For translocation activities, there is 
no particular need to prefer any sub-population as a source of material, given the general 
homogeneity of the genetic asset. Concerning ex situ conservation, seeds from each sub-
population are available at Pisa Germplasm Bank (Bedini and Carta 2010; Hay and Prob-
ert 2013). Studies about seed viability and ecology (Baskin and Baskin 2014) and phenol-
ogy of radicle emergence (Carta et al. 2014) in this species will provide basic knowledge 
to establish a nursery of immature and virginile plants, to be translocated in situ. This may 
alleviate the lack of generation turnover in the natural population. Finally, a population 
genetics study using the same markers, but applied to populations collected all across the 
distribution range, may provide further insights for the conservation of this species.
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