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Abstract
Model evaluation metrics play a critical role in the selection of adequate species distribution models for 
conservation and for any application of species distribution modelling (SDM) in general. The responses 
of these metrics to modelling conditions, however, are rarely taken into account. This leads to inadequate 
model selection, downstream analyses and uniformed decisions. To aid modellers in critically assessing 
modelling conditions when choosing and interpreting model evaluation metrics, we analysed the responses 
of the True Skill Statistic (TSS) under a variety of presence-background modelling conditions using purely 
theoretical scenarios. We then compared these responses with those of two evaluation metrics commonly 
applied in the field of meteorology which have potential for use in SDM: the Odds Ratio Skill Score 
(ORSS) and the Symmetric Extremal Dependence Index (SEDI). We demonstrate that (1) large cell num-
ber totals in the confusion matrix, which is strongly biased towards ‘true’ absences in presence-background 
SDM and (2) low prevalence both compromise model evaluation with TSS. This is since (1) TSS fails to 
differentiate useful from random models at extreme prevalence levels if the confusion matrix cell number 
total exceeds ~30,000 cells and (2) TSS converges to hit rate (sensitivity) when prevalence is lower than 
~2.5%. We conclude that SEDI is optimal for most presence-background SDM initiatives. Further, ORSS 
may provide a better alternative if absence data are available or if equal error weighting is strictly required.
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Introduction

Species Distribution Modelling (SDM) relates independent environmental variables to 
species occurrence data and, in turn, predicts a dependent variable such as probabil-
ity or the relative likelihood of occurrence (Guisan and Zimmermann 2000; Peterson 
2001; Guillera-Arroita et al. 2015). Even though SDM predictions mostly range from 
zero to one, SDM predictions are often discretised into binary presence-absence maps 
(i.e. comprising only zeros and ones) used to evaluate wildlife management options, to 
identify appropriate conservation translocation sites and to evaluate model performance 
(Willis et al. 2009; Fordham et al. 2012; Liu et al. 2013) with confusion matrix-based 
performance metrics. These confusion matrices (Table 1) summarise the correspondence 
between predictions and observations, by providing the counts of (a) true presences, (b) 
false presences (commissions), (c) false absences (omissions) and (d) true absences. How-
ever, inherent asymmetric uncertainty levels, particularly for mobile species, between the 
observed and predicted presence and absence classes, can complicate such comparisons.

Observed absences in presence-absence datasets can be either true, i.e. the species 
does not occur, or false, i.e. the species does occur but remains undetected (Martin et 
al. 2005). ‘Observed true absences’ result from biological processes, such as intoler-
ance to local conditions, competition (Hardin 1960; Leathwick and Austin 2001), 
general rarity (Gaston 1994), meta-population dynamics, i.e. perpetuating series of 
local extinctions and recolonisations (Hanski 1998) or other biotic interactions (Bas-
compte 2009; Wisz et al. 2013; Bulleri et al. 2016). ‘Observed false absences’, on the 
other hand, are artefactual in nature, resulting from insufficient monitoring relative to 
species movement (Tyre et al. 2003) or imperfect detection (MacKenzie et al. 2002). 
Whereas both true and false absences can lead to ‘zero-inflated’ datasets (Heilbron 
1994) that violate statistical assumptions, the latter are also a source of uncertainty in 
parameter estimates as artefactual signals (e.g. sampling bias, probability of detection) 
confounding estimates of probability of occurrence (MacKenzie et al. 2002).

The capability to distinguish observed true and false absences may also dictate the 
applicability of model evaluation metrics, many of which differ in weights assigned to 
each of the four categories in the confusion matrix (Table 1). For example, when the 
observed true and false absences are indistinguishable, omission errors, i.e. excluding 
known presences (type c in Table 1), may be more problematic than commission errors, 
i.e. including absences of relatively unknown certainty (type b in Table 1). Although 
seldom investigated, differential error weighting may also be desirable when consider-
ing specific biological questions that relate to population dynamics, such as population 

Table 1. Confusion matrix with cell designation as defined by the agreement of predictions (rows) and 
observations (columns).

Predicted Observed
Present Absent

Present True (a) False (b)
Absent False (c) True (d)
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sources versus population sinks (Guisan and Thuiller 2005), or biogeographical pro-
cesses like invasion source versus colonisation fronts (Ward 2007), particularly when 
using high confidence absence data.

While it is possible to estimate or model the probability of detection by repeated 
surveys and, hence, to discern observed true and false absences (MacKenzie and Royle 
2005; Guillera-Arroita et al. 2015), it is often logistically impractical. Moreover, pres-
ences often include numerous opportunistic observations, whereas absences generally 
go unrecorded and suffer from greater uncertainty. Therefore, contrasting presences 
with background points, i.e. pseudo-absences, which are randomly sampled from with-
in the study area (Iturbide et al. 2015), are the only viable option for many situations 
(Elith and Leathwick 2009). In this context, it has to be stressed that the default num-
ber of background points (10,000) in MAXENT, a broadly adopted maximum entropy 
machine-learning SDM algorithm (Phillips et al. 2004, 2017), is often insufficient and 
– unless increased sufficiently to capture the range of existing environmental conditions 
– equates to modelling at lower spatial resolution (Renner and Warton 2013).

When using presence-background occurrence data, the measured performance of 
modelling techniques, such as Generalised Linear Models (Nelder and Wedderburn 
1972) or MAXENT (Phillips et al. 2004, 2017; Philipps and Dudík 2008), generally 
has a positive relationship with both the number and geographic extent of random 
background points relative to presence points (Philipps and Dudík 2008; Barbet-Mas-
sin et al. 2012). Model performance then, should be interpreted as the result of a com-
plex interplay of artifacts (stemming from data or methods) and biological causes, since 
performance depends on modeller decisions, data availability and the underlying distri-
bution of species based on dispersal from historical distributions (Barve et al. 2011). For 
instance, specialist species are, by definition, confined to narrower conditions within a 
broad landscape, than are generalist species. Unfortunately, the relative ease of charac-
terising narrowly confined species (Jiménez-Valverde et al. 2008) and consequent high 
model performance scores, may not be due to biological causes, such as ecological spe-
cialisation, i.e. dependence on specific environmental conditions. Instead, good model 
performance may result from model overfitting as species presences simply coincide 
with specific conditions, combinations or transformations of environmental variables in 
overly complex models (Merow et al. 2014; Fourcade et al. 2018). Therefore, in order 
to interpret and compare the performance of models in a meaningful way, modellers 
must move past simple evaluation metrics (e.g. sensitivity and specificity) and consider 
confounding effects on model performance. Bias, cell number totals in the confusion 
matrix and prevalence should be assessed and their effect on model performance mini-
mised by, for example, choosing less susceptible evaluation metrics.

The issue of confounding effects on model performance is particularly important 
in conservation planning and reserve area selection, since both regularly take SDM 
predictions into account (Margules and Pressey 2000; Lin et al. 2014; Guillera-Arroita 
et al. 2015). Unless confounding effects are considered during model evaluation, how-
ever, any application of SDM is potentially affected, including estimates of species 
richness and community composition (Gioia and Pigott 2000; Pineda and Lobo 2009; 
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Thuiller et al. 2015) or hindcasting past distributions (Franklin et al. 2015). Unfor-
tunately, modellers often assume that model performance constitutes the most objec-
tive, if not the best, evidence for model legitimacy, representing not only prediction 
accuracy, but also underlying biological processes (Jiménez-Valverde et al. 2008). This 
assumption can be problematic as all evaluation metrics differentially react to model-
ling conditions. That is, two different evaluation metrics may represent true model 
performance better under varying circumstances (Lawson et al. 2014). More generally, 
evaluation metrics are functions of both the model prediction accuracy and the mod-
elling conditions (Woodcock 1976). This means that beyond representing prediction 
accuracy, model evaluation metrics can conflate both artefactual (e.g. differences in 
sampling regimes, study extent, resolution, model overfitting) and biological (e.g. de-
gree of species specialisation, population dynamics, autecology) signals.

In summary, the interpretability of measured model performance garnered from 
presence-background data is limited (Hirzel et al. 2006). The extent to which modelled 
predictions do reflect the posited goal of most initiatives – namely, identifying the un-
derlying biological processes that dictate species distributions, is less certain. However, 
any measure of model performance for any given model is the result of a four-part 
process that includes data collection, model training, threshold setting and the selection 
of model evaluation metrics. Here, we focus on the fourth part only, the selection of ap-
propriate model evaluation metrics under specific modelling conditions commonly en-
countered in presence-background SDM initiatives. We also provide some insights into 
how measured model performance may have resulted from biological signals or artifacts.

In this paper, we use purely theoretical scenarios to compare the responses of three 
evaluation metrics, the True Skill statistic (TSS; Allouche et al. 2006), the Odds Ra-
tio Skill Score (ORSS; Stephenson 2000) and the Symmetric Extremal Dependence 
Index (SEDI; Ferro and Stephenson 2011), to three confounding factors on model 
performance, the cell number totals in the confusion matrix (typically dominated by 
background points total and dependent on the size of the study area and resolution), 
bias and prevalence. To our knowledge, the latter two evaluation metrics have not been 
used in SDM before. We also contextualise our results in terms of SDM initiatives with 
respect to how well specific evaluation metrics reflect biological signals versus artifacts 
in particular modelling conditions and discuss this with reference to recently raised 
concerns about the use of TSS in SDM reported in literature. Additionally, R code is 
provided for ORSS and SEDI computations.

Materials and methods

Comparison of evaluation metrics

Detailed definitions of some of the more technical terms and a comparison of the 
mathematical properties of the analysed evaluation metrics are found in Table 2.
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Table 2. Comparison of selected properties of binary evaluation metrics compared in this article. ‘Con-
sistent at maxSSS’ refers to the threshold maximising the sum of sensitivity and specificity (SSS) suggested 
by Liu et al. (2013) which is generally recommended in literature. Please refer to Somodi et al. (2017) 
for prevalence effects on maxSSS itself. “+” and “–” indicate that the evaluation metric features or lacks a 
property, respectively.

Property Definition TSS ORSS SEDI
Asymptotically equitable Random predictions yield a score of zero + + +
Prevalence independent Same result when prevalence changes if both H and F remain unchanged + + +
Complement symmetric Same result when switching a and c with d and b + + +
Consistent at maxSSS Maximising SSS maximises the evaluation metric + – –
Fixed range Minimum/maximum possible values do not depend on prevalence + + +
Hard to hedge Monotonic increase with H and monotonic decrease with F + + +
Non-degenerate Meaningful results when prevalence approaches zero – – +
Regular Isopleths of the evaluation metric pass through the origin – + +
Transpose symmetric Same result when swapping b and c – + –

Below are the equations of four simple evaluation metrics (variables a, b, c and 
d according to Table 1). First, the hit rate (H, also termed sensitivity) measures the 
ratio of true presences to the sum of true presences and omission errors while com-
pletely ignoring commission errors and the number of true absences. Second, the 
false positive rate (F), equal to 1–specificity, measures the ratio of commission errors 
to the sum of commission errors and true absences. Third, bias (also termed bias 
score or frequency bias) measures the ratio of commissions to omissions and helps 
to identify over-/under-predicting models. And fourth, prevalence (also termed base 
rate) measures the ratio of presences (both predicted and omitted) to all cells and 
hence expresses how common within the study area a species is, according to the 
available data.

H = a/(a + c)	 (1)
F = b/(b + d)	 (2)

bias = (a + b)/(a + c)	 (3)
prevalence = (a + c)/(a + b + c + d)	 (4)

TSS measures the difference between H and F and was first developed as Peirce’s 
skill score in meteorology (Peirce 1884). It was later introduced to other fields, includ-
ing the field of SDM, where it replaced kappa (Cohen 1960) and its strong unimodal 
response to prevalence (Allouche et al. 2006).

TSS = H – F	 (5)

ORSS measures skill compared to a random prediction, is a synonym of Yule’s Q 
(1900) and was introduced to meteorology by Stephenson (2000). ORSS provides 
equal error weighting but rapidly converges to one even for imperfect predictions 
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(Woodcock 1976) and hence, requires significance testing to quantify skill and to dis-
cern real skill from chance (Stephenson 2000).

ORSS = (ad – bc)/(ad + bc)	 (6)

Ferro and Stephenson (2011) developed the Symmetric Extremal Dependence In-
dex (SEDI) as an improvement on earlier work by Stephenson et al. (2008) and Hogan 
et al. (2009). SEDI featured greatly reduced sensitivity to prevalence, while retaining 
most beneficial properties of its predecessors (Ferro and Stephenson 2011). This in-
cludes asymptotic equitability, i.e. the ability to distinguish random and skilled predic-
tions at smaller than infinite sample sizes (Hogan et al. 2010). Yet, SEDI is not appli-
cable if any of the four cells in the confusion matrix equals zero (Ferro and Stephenson 
2011) since log(0) yields infinity. Overfitted or misspecified models in these instances, 
however, can still be interpreted by adding an infinitely small number to those cells 
containing zeros. Our implementation of SEDI (see Supplementary Information for 
repository link) also issues a character string indicating if such approximations were 
used and how to best interpret the result.

SEDI F H F H
F H F

�
� � � � �
� � �

log( ) log( ) log( ) log( )

log( ) log( ) log( )

1 1

1 �� �log( )1 H
	 (7)

Theoretical scenarios

Using two types of extreme prediction settings (“Optimistic” and “Pessimistic”) and 
two types of typical species prevalence settings (“Differential Bias” and “Changing 
Bias”), we investigated the response of TSS, ORSS and SEDI to increasing cell number 
total in the confusion matrix, varying commission error rates, omission error rates and 
species prevalence. These settings were each divided into two theoretical scenarios: “In-
correctly Optimistic” (IO) and “Correctly Optimistic” (CO), “Correctly Pessimistic” 
(CP) and “Incorrectly Pessimistic” (IP), “Commission Bias” (CB) and “Omission Bias” 
(OB) and “Low Commission Rate” (LC) and “High Commission Rate” (HC). For 
each of the eight scenarios (Table 3), we prepared twenty cases, i.e. confusion matri-
ces, to be evaluated (Table A3). In “Changing Bias” scenarios (LC and HC), the term 
‘logistic’ was used to describe model fit which improved with background point totals 
and cell number totals but plateaued below perfect fit.

Although not mutually exclusive, each scenario is designed to reflect signals that 
could have arisen from biological signals or artifacts, thereby revealing how suscepti-
ble model evaluation metrics are to conflating the two. Below, we briefly describe all 
scenarios and Fig. 1 visualises selected example cases. Across the theoretical cases in 
the different scenarios, the cell number total (a + b + c + d) approximately ranges from 
1240 to 42560 with increasingly large step size (Table 3) to allow the analysis of model 
evaluation across a large range of modelling conditions without requiring an overly 
large number of cases. The R code to reproduce our analysis is available upon request.
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Table 3. Description of the theoretical scenarios, where IO, CO, CP, IP, CB, OB, LC and HC are ab-
breviations for scenarios “Incorrectly Optimistic”, “Correctly Optimistic”, “Correctly Pessimistic”, “Com-
mission Bias”, “Omission Bias”, “Low Commission Rate” and “High Commission Rate”. True positives, 
false positives, false negatives and true negatives are represented by a, b, c, and d, respectively. Total lists the 
sum of all four cells in the confusion matrix. The formulations are provided in pseudo-R-code, i.e. square 
brackets (“[“ and “]”) indicate vectors and colons (“:”) indicate a series. For example, “[x:y]” represents a 
vector of integers ranging from x to y. “...” are used to indicate repeating the same number, and n is the 
case number.

Scenario a b c d Total
IO increasing: 

0.005*[1:n]1.25*1000+248
increasing: 

[1:n]1.25*1000+248-[a]
constant: [1...1] constant: [1...1] min: 1250 

max: 42545
CO increasing: 

0.995*[1:n]1.25*1000+248
increasing: 

[1:n]1.25*1000+248-[a]
constant: [1...1] constant: [1...1] min: 1250 

max: 42545
CP constant: [1...1] constant: [1...1] increasing: 

[1:n]1.25*1000 
+248-[a]

increasing: 
0.995*[1:n]1.25 

*1000+248

min: 1250 
max: 42545

IP constant: [1...1] constant: [1...1] increasing: 
[1:n]1.25*1000 

+248-[a]

increasing: 
0.005*[1:n]1.25 

*1000+248

min: 1250 
max: 42545

CB constant: [200...200] constant: [30...30] constant: [20...20] increasing: 
[1:n]1.25*1000

min: 1250 
max: 42545

OB constant: [200...200] constant: [20...20] constant: [30...30] increasing: 
[1:n]1.25*1000

min: 1250 
max: 42545

LC ‘logistic’: 
[175:189,190...190]

increasing: [cn:c1] decreasing: 200-[a] increasing: 
[1:n]1.25*1000

min: 1210 
max: 42520

HC ‘logistic’: 
[175:189,190...190]

increasing: 3*[cn:c1] decreasing: 200-[a] increasing: 
[1:n]1.25*1000

min: 1230 
max: 42570

Scenarios IO, CO, CP and IP were designed to demonstrate how evaluation 
metrics at essentially constant extreme levels of prevalence react to an increasing 
cell number total in the confusion matrix. The biological component of these sce-
narios is analogous to specialist or generalist species that have a constant prevalence 
of 0.5% or 99.5% of the study area. The artefactual component is related to the 
implications of study area increases for the number of background points and total 
number of cells and their effect on the calculation of evaluation metrics. Scenario 
IO was characterised by large numbers of commission errors as it evaluated an 
extreme incorrectly optimistic modelling prediction (over-prediction) when true 
species prevalence is equal to 0.5%, reflecting extreme specialisation or rarity and 
under increasing background size. Scenario CO was identical to scenario IO in its 
extreme prediction. However, as true species prevalence was equal to 99.5% (reflect-
ing extremely low specialisation), it no longer resembled an over-prediction and 
was consequently dominated by true presences. Scenario CP evaluated an extreme 
correctly pessimistic prediction when true species prevalence was equal to 0.5%, 
reflecting a high degree of ecological specialisation and species presence was only 
predicted for a small proportion of the study area, under increasing background 
size. This scenario was characterised by large numbers of true absences. Scenario 
IP was identical to scenario CP in its extreme prediction but dominated by false 
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absences since true species prevalence was now equal to 99.5%, turning it into a 
gross under-prediction.

Scenarios CB and OB were designed to reveal the effect of bias on evaluation met-
rics under decreasing prevalence (~17% to ~0.5%) as the study area increased. In these 
scenarios, evaluation metrics should consistently penalise model predictions according 
to the degree of their bias, across the whole range of prevalence. Scenario CB was more 
optimistic (more commission errors and more predicted presences) than scenario OB 
(more omissions and fewer predicted presences). Therefore, the two scenarios together 
can be seen as a test of transpose symmetry.

Scenarios LC and HC examined the response of evaluation metrics to changes in 
bias while model fit (i.e. the number of true positives) and the total number of cells 
increased as prevalence decreased (~17% to ~0.5%). More specifically, the number of 
observations was held constant in both scenarios, while the numbers of true positives 
and omissions increased and decreased, respectively. However, at the same time, com-
mission errors became more frequent. In other words, the bias of the model changed 
together with prevalence and the size of the study area. Scenarios LC and HC differed 
only in their rate of commission errors which was three times higher in scenario HC 

Figure 1. Potential spatial distributions of confusion matrix categories corresponding to values of the 
True Skill Statistic (TSS), the Odds Ratio Skill Score (ORSS) and the Symmetric Extremal Dependence 
Score (SEDI) for selected scenario cases.
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than in scenario LC. The biological component could represent increasing specialisa-
tion of a given species as the study extent increases; whereas the artefactual component 
could represent resultant increases in model fit as increasing specialisation makes for 
easier characterisation (Jiménez-Valverde et al. 2008).

Results

Our results are summarised in Table 4 and presented in Fig. 2. In addition, we provide 
Fig. 3 which depicts the proportional difference between scores of SEDI and TSS, 
ORSS and TSS and SEDI and ORSS, for scenarios LC and HC, i.e. the sensitivity to 
changes in commission errors under decreasing prevalence.

Optimistic and pessimistic scenarios

TSS shows a strong response to increased study area size and, hence, confusion ma-
trix cell number totals and rapidly converges to zero, rendering indifferent useful and 
random models beyond cell number totals in the confusion matrix of approximately 

Table 4. Evaluation scores (rounded to four digits) for all evaluation measures metrics considered across 
all scenarios. IO, CO, CP, IP, CB, OB, LC and HC are abbreviations for scenarios “Incorrectly Optimis-
tic”, “Correctly Optimistic”, “Correctly Pessimistic”, “Commission Bias”, “Omission Bias”, “Low Com-
mission Rate” and “High Commission Rate”. Total lists the sum of all four cells in the confusion matrix. 
H, F, TSS, ORSS and SEDI list evaluation metric values for hit rate, false positive rate, True Skill Statistic, 
Odds Ratio Skill Score and Symmetric Extremal Dependence Score, respectively. Cases #6 and #7 closely 
resemble typical presence-background modelling conditions in MAXENT.

Cell Total Scenario H F TSS ORSS SEDI
ca. 9,000 – 10,000 
(Case #6)

IO 0.9796 0.9999 -0.0203 -0.9900 -0.4050
CO 0.9999 0.9796 0.020 0.9900 0.4050
CP 0.0204 0.0001 0.0203 0.9900 0.4050
IP 0.0001 0.0204 -0.0203 -0.9900 -0.4050
CB 0.9091 0.0032 0.9059 0.9994 0.9761
OB 0.8696 0.0021 0.8674 0.9994 0.9659
LC 0.9000 0.0012 0.8988 0.9997 0.9767
HC 0.9000 0.0035 0.8965 0.9992 0.9730

ca. 11,000 – 12,000 
(Case #7)

IO 0.9831 0.9999 -0.0169 -0.9900 -0.3937
CO 0.9999 0.9831 0.0169 0.9900 0.3937
CP 0.0169 0.0001 0.0169 0.9900 0.3937
IP 0.0001 0.0169 -0.0169 -0.9900 -0.3937
CB 0.9091 0.0026 0.9065 0.9995 0.9768
OB 0.8696 0.0018 0.8678 0.9995 0.9668
LC 0.9050 0.0011 0.9039 0.9998 0.9783
HC 0.9050 0.0032 0.9018 0.9993 0.9749
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30,000 cells. SEDI shows only a moderate response and converges much later to zero. 
Of note, H completely fails in this respect since both incorrectly optimistic predictions 
(IO) and correctly pessimistic predictions (CP) converge to one and zero, respectively 
and yield scores very similar to those of their correct (CO) and incorrect (IP) counter-
parts. Finally, SEDI has stronger discriminatory power than TSS at intermediate study 
areas yet, only ORSS is expected to correctly assess model performance as study area 
size converges to infinity (Fig. 2a, b).

Figure 2. Plots of the values of hit rate (H), the True Skill Statistic (TSS), the Odds Ratio Skill Score 
(ORSS) and the Symmetric Extremal Dependence Score (SEDI) for all eight scenarios. Panels a, b, c, d 
display scenarios “Incorrectly Optimistic” and “Correctly Optimistic”, “Correctly Pessimistic” and “In-
correctly Pessimistic”, “Commission Bias” and “Omission Bias” and “Low Commission Rate” and “High 
Commission Rate”. In panels a and b, the x-axis denotes the log of the total number of cells, i.e. the size 
of the study area, whereas in panels c and d, the x-axis denotes prevalence (%).

a

c d

b
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Differential bias scenarios and changing bias scenarios

TSS quickly converges with H and always favours over-predictions to under-predic-
tions. However, the degree to how much over-predictions are favoured increases as 
prevalence decreases. Although SEDI also favours over-predictions, it does so to a 
much smaller degree and is not significantly affected by prevalence. Just as in scenarios 
CO and CP, ORSS rapidly converges to one (Fig. 2c). Under increasing study area 
and background point totals and so decreasing prevalence, TSS converges quickly with 
H for the most realistic scenarios (LC and HC in Fig. 2d) and models that predict 
increasing amounts of both true presences and commission errors, as omission errors, 
decrease. At higher levels of prevalence, TSS can still discern the quality of models dif-
fering only in their rate of commission errors, but once prevalence falls below approxi-
mately 2.5%, their difference becomes indistinguishable. SEDI can assess the quality 
of models differing only in their rate of commission errors as prevalence decreases to 
almost zero. As in previous scenarios, since ORSS rapidly converges to one, model 
scores differing only in their rate of commission errors become indistinguishable even 
faster than when using TSS. In addition, the proportional difference between LC and 
HC SEDI scores and TSS scores are lower at the start though increase as prevalence 

Figure 3. Proportional difference between scenarios “Low Commission Rate” (LC) and “High Commis-
sion Rate” (HC) for (in dark green) the Symmetric Extremal Dependence Score (SEDI) vs. the True Skill 
Statistic (TSS), (in orange) the Odds Ratio Skill Score (ORSS) vs. TSS and (in blue) SEDI vs. ORSS. The 
black, horizontal, dashed line represents equal differentiation. As there are slight differences in prevalence 
between scenarios LC and HC, the x-axis shows the mean prevalence for given cases across both scenarios.
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decreases (Fig. 3). This indicates that, although TSS identifies differences in commis-
sion error levels at high prevalence (greater than approximately 7%) better than SEDI, 
the reverse is true at the low prevalence levels typically encountered in presence-back-
ground modelling.

Discussion

Using eight theoretical scenarios, we have shown that TSS, ORSS and SEDI, as well 
as their underlying evaluation measures (H and F, see F in Table 2), show distinct 
responses to: 1) increasing size of the study area and, hence, growing numbers of back-
ground points, even when prevalence is kept constant (scenarios IO, CO, CP and 
IP), 2) to the direction of bias as prevalence decreases and the extent of the study area 
and cell number totals increase (scenarios CB and OB) and 3) to changes in bias as 
prevalence decreases and the extent of the study area and cell number totals increase 
(scenarios LC and HC).

Our analysis confirmed a very problematic property of TSS. That is, a very large 
number found in any of the four cells of the confusion matrix (Table 1) leads to the 
marginalisation of the other entry in the same column (Stephenson 2000). This means 
that, when assessing rare events, such as rare species presence, TSS quickly converges 
to H (Doswell et al. 1990). Less apparent responses of TSS to prevalence have also 
been discussed in the field of SDM, for instance, by Somodi et al. (2017) who found 
that small sample size exacerbates the effects of prevalence on TSS. We also evaluated 
two alternative evaluation metrics from the field of meteorology, SEDI and ORSS. 
The former appears to be ideal for typical low prevalence presence-background SDM 
conditions, whereas the latter may be useful for high confidence presence-absence data 
or if strictly equal error weighting is required.

Optimistic and pessimistic scenarios

By grossly over- or under-predicting the distribution of a hypothetical target spe-
cies, we observed the response of evaluation metrics to extreme biases in less re-
alistic scenarios. These extreme scenarios, however, have also shown that discern-
ment of strongly and weakly performing models greatly differs amongst evaluation 
metrics and modelling conditions. While these scenario results support the use of 
ORSS for large study extents, because of its rapid convergence to one, even for 
imperfect predictions (Woodcock 1976), significance testing is required in order 
to determine the quality of and to allow comparisons across models (Stephenson 
2000). Therefore, SEDI is preferable as it allows direct assessments of model qual-
ity across a much larger spectrum of study extents. Further, SEDI assessments are 
made with higher discriminatory power than TSS, which rapidly converges to zero 
for extreme predictions.
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Differential bias and changing bias scenarios

These scenarios have been designed to reflect common modelling conditions in order 
to observe the response of evaluation measures to differential (CB and OB) and chang-
ing (LC and HC) biases, under decreasing prevalence as the size of the study area and, 
hence, the number of background points increased. Analysis of these scenarios revealed 
very distinct responses to the differing modelling conditions. Results for scenarios CB 
and OB and LC and HC suggest the use of SEDI since: 1) TSS encourages over-
predictions due to its strongly biased treatment of errors which increases as prevalence 
decreases; 2) TSS quickly loses the discriminatory power to differentiate between mod-
els, differing only in their commission rate as it always converges to H; and 3) ORSS 
converges to one so rapidly (Stephenson 2000) that such differences vanish at even 
higher prevalence levels than when using TSS.

Modelling conditions and research questions

Our analysis reaffirms the importance of selecting model evaluation metrics corre-
sponding with modelling questions and conditions (Woodcock 1976). Important 
modelling conditions include the extent of the study area (Termansen et al. 2006), 
prevalence (Doswell et al. 1990; Stephenson 2000; Somodi et al. 2017; Leroy et al. 
2018) and the relative severity of model error types due to varying degrees of biological 
and artefactual causes. Important biological factors, related to the extent of the study 
area and species prevalence, include the degree of specialisation within the given land-
scape (Jiménez-Valverde et al. 2008); population sinks (Guisan and Thuiller 2005); 
and species equilibrium (Václavík and Meentemeyer 2012). This latter factor is also 
important in the context of invasive species (Ward 2007). Artifacts can originate from 
the cell number total in the confusion matrix which is largely driven by background 
points and hence dependent on modelling resolution (Seo et al. 2008) and study ex-
tent. Artefactual signals can also be caused by prevalence and its interactions with 
sample-size (Somodi et al. 2017) and the degree of confidence in absence data (Leroy 
et al. 2018) which is influenced by species mobility (Jaberg and Guisan 2001) and a 
multitude of other factors.

Do commission errors matter?

Our results suggested a limited capacity of TSS to provide consistent performance com-
parisons across varying modelling conditions. This is worrying because TSS may yield 
misleading estimates of model fidelity, which can lead to the selection of inadequate 
models. Although it may be tempting to assume that researchers would recognise anom-
alous conditions where TSS scores are misleading (such as those presented here), this is 
not necessarily the case – as demonstrated by the broad and seemingly uncritical applica-
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tion of TSS in presence-background SDM over the last decade. Complications, owing to 
the relative inability of TSS to provide information on commission errors as prevalence 
approaches zero, are more nuanced. Ultimately, such complications are only problematic 
in as much as commission errors matter, which depends on bias > 1, the question, the 
available data and the biology of the species. In fact, it is widely acknowledged that even 
absence data from professional surveys have greater degrees of both sampling and ecolog-
ical uncertainty than presence data (MacKenzie et al. 2017). Therefore, one could argue 
that errors of omission, i.e. predicting absences where there are species observations, are 
far more grievous than commission errors in model evaluation, particularly when using 
presence-background data. This is because commission errors can be relatively obscure 
and should be given less weight than omission errors in model evaluation (Braunisch and 
Suchant 2010; Liu et al. 2013). Taking the above reasoning to its logical extreme then, 
commission errors are irrelevant when considering pseudo-absence data.

While the above reasoning is persuasive, simply ignoring commission errors in pres-
ence background data by limiting evaluation to H, is not a viable option under all but a 
small subset of questions, modelling conditions and biological assumptions. More specifi-
cally, doing so would be incongruent with the biological circumstances, sampling realities 
and the intents of most modelling initiatives. Further, evaluation scores would become 
more vulnerable to artificial inflation. From a biological perspective, model evaluation 
metrics that ignore commission errors are equivalent to assuming that all background 
points are locations where the species is present but unobserved. That is, assuming that 
observed presence locations may represent the subset of relative high use or occupied 
conditions within local settings (Elith et al. 2011). While this may be a good assumption 
for situations where habitat use of a generalist species is considered (particularly if survey 
effort has been uniform across the entire study area), it is unrealistic and impractical for 
many modelling initiatives that attempt to characterise either the fundamental or realised 
niche (Elith and Leathwick 2009), based on incomplete sampling regimes.

Furthermore, even when the above biological assumptions and survey prerequi-
sites are valid, explicitly choosing to ignore commission errors further assumes that 
unobserved locations are irrelevant—an assumption that is seldom the case since these 
locations may correspond to low population density areas (Guisan and Thuiller 2005). 
Models (and subsequent thresholds) that commit lower numbers of commission er-
rors may better differentiate between high and low population density areas, a highly 
desirable characteristic for assessing population status (Tôrres et al. 2012). Of course in 
rarer situations, strictly considering omission errors in model evaluation may be desir-
able such as when assessing the impacts of decisions on vulnerable species (Karl et al. 
2000). In addition, ignoring commission errors can lead to unintended consequences 
as seen in Fig. 2a where H is deceptively high for incorrectly optimistic outputs, i.e. 
over-predicting models. Although commission errors should be weighted less than 
omission errors in most SDM initiatives, as accomplished by both TSS and SEDI, this 
does not mean that they are irrelevant or become irrelevant when prevalence decreases. 
Exceptions to this are very specific circumstances.

This study demonstrated that more consistent commission error weighting (as 
with SEDI) also circumvents a number of potentially artefactual signals as prevalence 
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approaches zero. We also discussed the relative inability of TSS to compare perfor-
mance across modelling conditions. For these reasons, whereas maximising TSS may 
be instrumental when presence-absence thresholds are required (Liu et al. 2013), TSS 
may not perform well in presence-background model evaluations (Somodi et al. 2017; 
Leroy et al. 2018). Unless circumstances require down-weighting of commission errors 
as prevalence decreases, SEDI’s ability to take into account information on both er-
ror types across a wide range of modelling conditions makes it a better choice for low 
prevalence conditions, characteristic of presence-background modelling approaches.

The use of similarity measures as an alternative to TSS has recently been suggested 
by Leroy et al. (2018). However, similarity measures are only applicable when there is a 
known truth such as when modelling virtual species (see Hirzel et al. 2001; Leroy et al. 
2016 for an introduction to virtual species). One might also consider the use of boot-
strapping and related techniques (Efron 1983) such as sub-sampling in model evalua-
tion (Verbyla and Litvaitis 1989), i.e. the repeated sub-sampling of background points 
to the number of presences and averaging of the resulting scores. Sub-sampling would 
remove the bias caused by large numbers of background points towards true absences 
from confusion matrices altogether, albeit at the cost of being computationally intensive. 
Therefore, alternative measures such as SEDI or, for some specific cases, ORSS, appear 
superior as they are neither limited to virtual species nor costly in terms of computation.

Conclusions

In our study, we focused on the importance of model evaluation in the context of ecol-
ogy and conservation. The problems discussed are particularly relevant in systematic 
conservation planning (Margules and Pressey 2000; Lin et al. 2014; Guillera-Arroita 
et al. 2015) but will likely cause issues in any application of SDM. This is, since in any 
application, different scores favour different models (e.g. over-predictive vs. under-
predictive, as they differentially respond to modelling conditions (Woodcock 1976), 
which inevitably affects outcomes.

Our results indicate that ORSS is a suitable evaluation metric for high-confidence 
presence-absence data, high prevalence situations or if strictly equal error weighting is 
required. SEDI and to a lesser degree TSS, are suitable evaluation metrics for presence-
background SDM initiatives, since the error weighting of the evaluation metrics bet-
ter reflects low-confidence pseudo-absence data. However, since SEDI provides more 
consistent performance scores and weighting of commission errors over a wide range of 
study extents (and background point totals) and prevalence, it is better suited for pres-
ence-background SDM, which is applied over a wide range of modelling conditions 
(i.e. to common or rare species and across single protected areas or whole continents). 
Finally, we strongly recommend abstaining from the use of TSS whenever prevalence 
is lower than approximately 2.5% or when a large number of background points is 
used that drives the total number of cells in the confusion matrix to more than roughly 
30,000 cells since TSS will not distinguish between low and high commission error 
rates or useful and random models.
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