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Abstract
The Bolson tortoise, Gopherus flavomarginatus, occurs within a restricted geographical area in the Mexican 
Chihuahuan Desert. We analyzed the variation in surface microhabitat with relation to the burrow occu-
pancy for this tortoise at the Mapimí Biosphere Reserve, Mexico. In summer 2010, we monitored burrow 
activity (active, inactive, or abandoned) and measured environmental factors that might influence the 
burrow’s occupancy by tortoises (air temperature, relative humidity and substrate temperature, both inside 
and outside the burrow, and the plant cover around it). Discriminant analysis was used to identify the 
importance of these variables influencing burrow occupancy. Correlation and linear regression analyses 
were performed to quantify the relation between environmental factors in the sampled burrows.

Results. Sixty-one burrows were identified at the Tortugas locality. The first function’s auto-value 
analysis indicates that this function explains 97.9% of the variation in burrow activity status; high occu-
pancy scores were associated with low substrate temperature inside the burrow. Plant cover was inversely 
proportional to substrate temperature inside the burrow. These results suggest the importance the density 
of plants surrounding the tortoise’s burrow as a key factor influencing the burrow microclimate and oc-
cupancy by the tortoises.

Conclusions. Gopherus flavomarginatus inhabits burrows, in part, based on microhabitat structure, 
with plant cover being a main factor influencing burrow occupancy. Our findings indicate that human 
land use and vegetation management are important for conserving Bolson tortoises, and for understand-
ing habitat conditions necessary for the successful establishment of populations elsewhere.
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Introduction

Research on the ecology of ectothermic organisms has established the importance of 
vegetation structure for their microhabitat selection (Hertz et al. 1994, Vitt et al. 1997, 
Litzgus and Brooks 2000, Bryant et al. 2002). Changes in vegetation produce varia-
tions in other microhabitat attributes, like light intensity, wind speed, air and soil tem-
peratures (Pringle et al. 2003). Variation in these features influences thermoregulatory 
behaviors and activity levels in ectotherms (Adams and Decarvalho 1984, Huey 1982, 
1991, Huey and Kingsolver 1989, Webb et al. 2005, Turbill et al. 2011), resulting in 
greater impact on species that are thermally sensitive to changes in habitat structure 
(Walther et al. 2002, Pringle et al. 2003).

Population ecology theory predicts that in a changing environment, a population 
can adapt to new conditions, migrate to a place that favors its survival, or become 
extinct (Pease et al. 1989, Pringle et al. 2003) if the species presents a capacity of 
dispersion and limited evolutionary responses (Allendorf and Luikart 2007). Long 
term studies have established relationships between changes in vegetation density and 
animal movements and extirpations of populations with small distributions (Fitch 
1999, Pringle et al. 2003). For example, abundances of forest birds in New Hampshire 
decreased considerably over a period of 30 years causing local extinction of four spe-
cies; the most important local factor affecting bird abundance was temporal change in 
forest vegetation structure (Holmes and Sherry 2001). Likewise, it has been reported 
that for Gopherus polyphemus in sites invaded by an introduced weed, tortoises avoided 
areas where weeds had formed a dense monoculture, suggesting that habitat selection 
increases isolating effect of habitat fragmentation on this tortoise (McCoy et al. 2013).

The Bolson tortoise, Gopherus flavomarginatus (Figure 1), is North America’s least 
studied tortoise; it is considered as Vulnerable by IUCN Red List (2015), and has a 
geographical distribution restricted to the Mapimí Basin in the Mexican Chihuahuan 
Desert (Aguirre et al. 1984). This restricted distribution is likely due to specific habitat 
requirements (Aguirre et al. 1997), including constant temperatures and humidity 
levels provided by their burrows throughout the year, as G. flavomarginatus seems to 
have a limited thermoregulation capacity (Adest et al. 1989); Adult individuals of this 
species have a high fidelity to their burrow, spending about 95% of their life hibernat-
ing or aestivating within this structure, and remain only 5% outside of them during 
the summer season (Adest et al. 1989, Lovich and Daniels 2000, Daren-Riedle et al. 
2008), and adult tortoises are unlikely to be naturally depredated (Treviño et al. 1995).

Therefore, if Bolson tortoise requires specific microclimatic conditions to inhabit 
burrows and survive, variations in microhabitat are expected to influence either their 
use or abandonment. An analysis of microhabitat variation is shown here in relation to 
the occupation of burrows of G. flavomarginatus. Our objectives included: 1) charac-
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Figure 1. Gopherus flavomarginatus (Bolson tortoise).

terization of the environmental factors of air temperature, relative humidity, substrate 
temperature and pH; physical factors of width and height of burrows and 2) determine 
how these factors are related to plant cover and occupancy of burrows. This informa-
tion can increase understanding of this species’ response to variation among micro-
habitats, and support conservation efforts for this species.

Methods

The 100 hectare study site, Tortugas, is located in the south-central portion of the 
Mapimí Biosphere Reserve, in Mexico (26°00', 26°10'N and 104°10', 103°20'W; 
CONANP 2006) and within the region known as the Mapimí Basin (Figure 2). The 
reserve encompasses parts of the municipalities of Tlahualilo and Mapimí in the State 
of Durango, Sierra Jimenez in Chihuahua, and Sierra Mojada in Coahuila. The site 
is located at an altitude of 1000–1200 m in the lowlands up to 2000 m and provides 
numerous exposures of volcanic and chalky origin and sand dunes (Ramírez-Carballo 
and Pedroza-Sandoval 2011). A semi-hot desert climate prevails (2.8°C in winter to 
36.3°C in summer), with an annual mean precipitation of 145.88 mm (CNA 2007) 
concentrated in summer (from June to September).
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Figure 2. Study site. The black circle show Tortugas locality, in dotted lines is show The Mapimí Bio-
sphere Reserve and continuous lines the state limits.

At Tortugas, we followed the monitoring protocol established by CONANP to find 
adult tortoise burrows (CONANP 2006). Burrow monitoring was performed during 
two consecutive days in summer (September, 2010). There was no rainfall before or after 
those two days. We classified burrow occupancy (active, inactive, or abandoned) based 
on measuring external characteristics according to Auffenberg and Franz (1982) and Cox 
et al. (1987). Accordingly, an active burrow shows foot or plastron prints on the access 
tunnel and the surrounding mound; the soil is loose, with little compaction. In an inac-
tive burrow, no tortoise tracks are seen, and soil at the burrow’s entrance and the mound 
looks compacted. Finally, an abandoned burrow entrance shows an accumulation of de-
bris, such as branches, grass, cobwebs, and the soil of the mound is clearly compacted.
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In every burrow, was measured microhabitat structure considering the variables 
width (W) and height (H) of the entrance and the substrate’s pH 30 cm inside. Data-
loggers (Datalogger USB-WK057, accuracy: ± 1.0) were used to measure environmen-
tal factors continuously, including air temperature (Ta) and relative humidity (RH) 
inside (30 cm depth) and outside (30 cm above surface) the burrow, except pH, all 
environmental data were recorded each hour for 24 hours; substrate temperature inside 
the burrow (Ts) was also recorded using dataloggers (in contact with the surface). Also, 
we measured plant cover (PC) using an ellipse area formula (π × a × b/4, where a = 
major axis and b = minor axis), within three meters of each burrow.

Discriminant analysis was used to determine which habitat and environmental fac-
tors differentiate burrows categorized by their occupancy status. Normality was not 
achieved (Kolmogorov-Smirnov tests; P ≤ 0.05) and we transformed the continuous data 
(W, H, pH, Ta, RH, Ts) with the logarithmic formula (X´ = LOG10(X + 1)), and PC 
with the arcsine formula (X´= Arcsin√X), according to Zar (1999). A Post Hoc test (LSD) 
was performed to identify differences among the averages of the three status groups. 
Lastly, correlation and linear regression analyses were performed to quantify the relation 
between significant environmental factors and PC in the sampled burrows and was plot-
ted temporal variation of temperature. All statistical analyses were made using STATIS-
TICA 10.0 (StatSoft 2011) software and considered statistically significant at P ≤ 0.05.

List of abbreviations

W burrow width
H burrow height 
Tai air temperature inside the burrow
Tao air temperature outside the burrow
RHi relative humidity inside the burrow
RHo relative humidity outside the burrow
Tsi substrate temperature inside the burrow
PC plant cover 
LSD least significant difference
d.f. degrees of freedom
SD standard deviation

Results

We located and measured a total of 61 burrows at the Tortugas study site. There was 
significant difference in the Tsi among the three types of burrows (F = 32.40, d.f. = 2, 
58, P < 0.001; Table 1). Post hoc analysis (LSD) showed that abandoned burrows had 
higher Tsi (x‒ = 31.1°C, SD = 5.24) than active (x‒ = 28.0°C, SD = 4.7) and inactive 
(x‒ = 27.0°C, SD= 3.8) ones (Table 1).
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Table 1. Descriptive statistics of environmental factors for active (n = 26), inactive (n = 7), and aban-
doned (n = 28) burrows, and means comparison tests among burrows categories (d.f. = 2, 58 for all cases). 
Air temperature inside the burrow (Tai), air temperature outside (Tao), relative humidity inside (RHi), rela-
tive humidity outside (RHo), substrate temperature inside (Tsi).

Environmental factor/
Burrow´s status Mean Standard 

deviation Min-Max Wilks 
Lambda F P

Tsi (°C)    0.472 32.40 <0.001
Active 28.00 4.72 18.0–37.0

Inactive 27.00 3.82 24.0–35.0
Abandoned 31.10 5.24 20.0–43.0

Tai (°C)    0.995 0.136 0.873
Active 33.74 7.80 15.5–48.1

Inactive 34.92 6.86 22.0–40.5
Abandoned 33.47 5.14 20.6–43.8

Tao (°C)    0.993 0.191 0.827
Active 33.40 7.51 14.8–44.0

Inactive 34.90 7.15 22.2–41.9
Abandoned 33.45 4.94 21.0–42.2

RHi (%)    0.964 1.090 0.343
Active 29.49 7.29 19.0–51.4

Inactive 30.65 8.19 20.5–41.5
Abandoned 34.55 14.37 19.0–75.0

RHo (%)    0.984 0.478 0.623
Active 21.48 6.37 14.0–37.1

Inactive 20.68 5.91 13.4–28.8
Abandoned 22.30 5.07 15.3–38.0

pH    0.987 0.384 0.683
Active 7.07 0.57 6.0–8.0

Inactive 7.0 0.0 7.0–7.0
Abandoned 6.98 0.28 6.0–8.0

LC (%) 0.979 0.633 0.535
Active 56.20 26.7 4.9–116.6

Inactive 59.84 21.71 38.7 - 100
Abandoned 55.2 21.4 19.8–86.8

W (cm)    0.978 0.649 0.526 
Active 30.73 12.79 14.0–61.0

Inactive 24.71 8.63 13.0–38.0
Abandoned 23.75 11.19 12.0–60.0

H (cm)     0.909 2.915 0.062 
Active 21.88 14.02 6.0–75.0

Inactive 19.57 7.13 9.0–30.0
Abandoned 15.10 8.12 1.0–46.0

Results of discriminant analysis were as follows: the first function was statistically 
significant (ᴧ = 0.241, x²= 76.74, d.f. = 18, P < 0.001; n = 61), while the second func-
tion was not (ᴧ = 0.942, x²= 3.25, d.f. = 8, P < 0.917; n = 61). The first function’s auto-
value analysis indicates that this function explains 97.9% of the variation in burrow 
activity status, where Tsi showed the higher scores (Table 2 and Figure 3). 
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Table 2. Discriminant canonical function 1 scores with relation to burrow entrance width (W), height 
(H), air temperature inside the burrow (Tai), air temperature outside (Tao), relative humidity inside (RHi), 
relative humidity outside (RHo), substrate temperature inside (Tsi), plant cover (PC), and substrate pH.

Environmental factors Score
Tsi 621*

H -.185*

RHi .110*

RHo .073*

PC .061
pH -.054
W .020
Tao .009
Tai -.004

Figure 3. Distribution of the centroids for Bolson tortoise burrows during the summer season.

An inverse relationship was observed between PC and Tsi (y = -0.2181x + 41.504), 
indicating that the higher the plant cover around the burrow, the lower the substrate 
temperature inside it (Figure 4). Correlation and determination coefficients were high 
(R = 0.98, R2 = 0.96, respectively); plant cover around the burrows influences 96% the 
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increase of substrate temperature inside the burrows. This relationship was found to 
be highly significant (F = 1408.949, d.f. = 1,59; P < 0.001), the temporal variation of 
temperature is shown in Figure 5.

Discussion

Adest et al. (1989) described individuals of this species emerging from their burrows at 
night as a response to increasing substrate temperatures inside their burrows (>34°C) 

Figure 4. Relation between plant cover (PC) and inner burrow substrate temperature (Tsi) for Gopherus 
flavomarginatus burrows.

Figure 5. Temporal variation of temperature. Tsi makes reference to temperature of substrate, squares in-
dicate active burrows, circles make reference to abandoned burrows and rhombus show inactive burrows.
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because of thermal delay (which it is described as the speed at which the temperature 
fluctuations penetrate the substrate (Körtner et al. 2008)). Also, they described that 
around 0700 hr at a distance of 15 cm inside the burrow, the substrate temperature is 
still above 31°C, while the temperature of an adult individual (7.3 kg) is below 30°C 
when beginning foraging bouts at the surface. These observations support a hypoth-
esis that the substrate temperature inside G. flavomarginatus burrows influences its 
occupancy dynamics, increasing the possibility of abandonment when the substrate 
temperature inside these structures consistently is equal to or greater than 31°C.

Our analyses provided evidence that an increase in substrate temperature inside the 
burrows and their consequent abandonment at our Tortugas study site was correlated 
with vegetation cover at a scale of 3 m. Aguirre et al. (1984) described that the presence 
of G. flavomarginatus burrows at the Mapimí Biosphere Reserve seemed to be related 
to shrub type (Larrea tridentata (Coville 1893), Prosopis glandulosa (Torrey 1827) and 
grasslands (Hilaria mutica (Bentham 1881)). McCoy et al. (2006) and Waddle et al. 
(2006) reported that habitat quality reduction was the apparent explanation for the 
increase of abandoned burrows in G. polyphemus population in Florida, USA. Addi-
tionally, Aresco and Guyer (1999) stated that land cover changes around G. polyphemus 
burrows can result in their abandonment in certain habitats. Similarly, Boglioli et al. 
(2000), Hermann et al. (2002), Jones and Dorr (2004), Baskaran et al. (2006), and 
Ashton et al. (2008) all described that for other species of Gopherus the presence of 
burrows is associated with the vegetation, and that the permanent abandonment of 
these burrows seems to happen as a response to unfavorable habitat conditions.

Moreover, Huey (1982), Hertz et al. (1994), Vitt et al. (1997), and Bryant et al. 
(2002) mentioned that vegetation structure plays a key role in the activity, feeding, and 
distribution of some ectothermic organisms. These previous studies support our con-
clusion that the occupation of G. flavomarginatus’ burrows are related to microhabitat 
structure, with vegetation cover being one of the main environmental factors that can 
affect habitat selection, this interaction of temperature and microhabitat is key to the 
species’ survival. With predicted increasing temperatures as climate change effects be-
come more pronounced in the deserts of America (Friggens 2012), this interaction will 
be critical over the coming years. On the other hand, we consider that relative humid-
ity inside the burrows is important for Bolson tortoise. However, this variable showed 
low scores to discriminate activity status of the burrows and did not present significant 
differences when comparing between activity status; therefore, it was no possible to 
determine its influence on burrows occupation.

It is important to note that G. flavomarginatus might not have originated as a desert 
ecosystems species, they appeared toward the end of the Tertiary, so they could have spent 
more than 94% of their evolutionary history during the Quaternary (Pleistocene-Holo-
cene) living in non-desert grasslands (Van Devender and Burgess 1985). Therefore, their 
current restriction to cool microclimates in their summer burrows could be an extension 
of a physiology geared to a cooler, more mesic climate. Consequently, it is likely that their 
thermal physiology and even their social behavior reflect more their burrow microhabitat 
than the surface environment of the Chihuahuan Desert (Adest et al. 1989).
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Conclusions

Having in mind that vegetation cover is a key part of burrows occupancy dynamics for 
this species, preserving the plant life in regions where G. flavomarginatus might poten-
tially colonize or be translocated to in and outside the Mapimí Biosphere Reserve is 
of critical importance. To achieve this, we need to conceptualize a dynamic reserve (as 
opposed to a static one that actually exists) that follows ecological succession processes 
on which this tortoise species survival seems to be strongly dependent.
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