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Abstract
The genus Osmoderma is a flagship taxon of invertebrate conservation in Europe and encompasses a 
complex of four accepted species. While species limits amongst Osmoderma have been intensively studied, 
patterns of intraspecific variation are poorly known. In this paper, the authors focus on clarifying the phy-
logeographic structure of the East European Osmoderma barnabita using samples from Croatia to Finland. 
Samples of hind legs were collected from populations in Latvia and Finland (n=186) and combined with 
previously-published sequences from GenBank and museum specimens (n=10). In a partial sequence of 
the mitochondrial COI gene (759 bp), 26 closely related haplotypes were found. Beetle samples from dif-
ferent parts of Europe were distinct and showed no overlap in haplotype composition. The solitary popu-
lation of Finland proved to be monomorphic and all 97 individuals sampled here belonged to a single 
haplotype unique to this region. The results suggest the Northern parts of Eastern Europe to be dominated 
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by a single COI haplotype to which most of the other haplotypes are linked by one or two mutations. 
The pattern seems to reflect a founder effect or a strong bottleneck event. While O. barnabita is widely 
distributed over Eastern Europe, current patterns of mitochondrial genetic diversity appear influenced by 
population history and little homogenisation by ongoing gene flow. From a conservation perspective, the 
patterns suggest that regional populations might need to be managed as subunits and that the population 
of Finland may be affected by low genetic diversity.

Keywords
Osmoderma, population expansion, demographic history, phylogeography, sub-populations, threatened 
species

Introduction

Genetic diversity within a single species is a fundamental aspect of biodiversity 
and can be used in species conservation and management (Woodcock et al. 2007, 
Frankham et  al. 2009, Todisco et al. 2010, Solano et al. 2013). Analyses of DNA 
polymorphisms offer high resolution and can resolve intraspecific patterning even 
within morphologically similar cryptic species (Hebert et al. 2003b, Bickford et  al. 
2007, Murray et al. 2008, Huemer and Hebert 2011, Jusoh et al. 2014, Solano 
et al. 2016). For efficient species conservation, resolving such patterns is necessary to 
recognise genetic issues amongst sub-populations, e.g. genetic erosion, genetic distance 
or potential ESUs (evolutionarily significant units) (Crandall et al. 2000, Fraser and 
Bernatchez 2001, Abellán et al. 2007, Frankham et al. 2009, Zauli et al. 2016).

A wealth of molecular methods is now available for detecting the level of intraspe-
cific diversity or divergence amongst sub-populations (Todisco et al. 2012, Theissinger 
et al. 2013, Drag et al. 2015), with sequences of the mtDNA COI gene (mitochondrial 
DNA cytochrome c oxidase subunit 1 gene) forming a popular target (Williams et al. 
2006, Hajibabaei et al. 2007, Painter et al. 2007, Knopp et al. 2011, Čandek and 
Kuntner 2015). Despite distinct constraints on sequence variation in the COI locus 
(e.g. Moritz and Cicero 2004, Galtier et al. 2009, Smith et al. 2012, Pentinsaari et al. 
2014b, 2016), mitochondrial DNA offers several advantages for molecular population 
studies: first, the target DNA is available in high copy numbers and thus easily extract-
able. Second, the effective population size of such maternally inherited markers is only 
half that of nuclear genes and mtDNA is hence particularly sensitive to founder and 
bottleneck effects (Avise 2004). Finally, the COI gene, in particular, offers a convenient 
level of variation to address patterns and processes at intermediate time scales, with a 
high level of variation amongst beetle species specifically (Wirta et al. 2010, Pentinsaari 
et al. 2014a, Pentinsaari et al. 2016).

In Europe, the migration of organisms after the Pleistocene glacial period has sig-
nificantly influenced patterns of genetic variation within species (Hewitt 1996, 2000; 
Donner 2005). Following the retreat of the ice sheet, the predominant expansion 
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routes were from Southern Europe towards the North (Hewitt 1999, 2004) or from 
some cryptic refugia in Central and Eastern Europe (Stewart and Lister 2001, Schmitt 
and Varga 2012). Factors in the demographic history of sub-populations (e.g. isola-
tion, gene flow and gene drift) may explain present-day ranges, differences in ecology 
and ultimately resource use (Knopp et al. 2011, Miraldo and Hanski 2014, Solano et 
al. 2016, Zauli et al. 2016). They may also influence current levels of genetic variation, 
affecting the evolutionary potential of a given (sub)-population (Avise 2000, Weber et 
al. 2000, Dalén et al. 2007, Allendorf et al. 2013). Thus, information on the demo-
graphic history of the species can be applied as a valuable tool in conservation actions 
of threatened species (Audisio et al. 2009, Todisco et al. 2010, Solano et al. 2013, Drag 
et al. 2015).

In Europe, one example of a taxon presumptively expanding from South to North 
after the glacial period is the genus Osmoderma LePeletier & Audinet-Serville, 1828 
(Audisio et al. 2007, 2009). These ‘hermit beetles’ comprise a flagship taxon for arthro-
pod conservation and are included in Annexes II and IV of the Habitats Directive of 
the European Union as a priority species for conservation (Anonymous 1992, Euro-
pean Commission 2007). The genus Osmoderma is particularly vulnerable to the loss 
of veteran trees, as its larvae requires tree cavities (Ranius and Nilsson 1997, Landvik et 
al. 2016a) where it occurs in nutritious wood mould substrate (Landvik et al. 2016b). 
Such large trees and such cavities have become rare in modern forests – a development 
now threatening the diversity of saproxylic species in Europe (Nieto and Alexander 
2010, Stokland et al. 2012, Carpaneto et al. 2015).

The hermit beetles were previously thought to be a single species, Osmoderma er-
emita. However, following the revisions by Gusakov (2002) and Audisio et al. (2007, 
2009), it is currently divided into two main clades (with a primarily West- and an East-
European distribution, respectively), encompassing a total of four confirmed species 
(Audisio et al. 2007, 2009). The exact taxonomy of these species has been debated and 
the updated nomenclature of Audisio et al. (2007) has henceforth been adopted by the 
authors. The West European cluster comprises widely distributed O. eremita, with O. 
cristinae and O. italicum. Whether the latter form ‘good species’ is nonetheless debated 
(Audisio et al. 2007, Audisio et al. 2009). The East-European clade encompasses two 
species; the widely distributed O. barnabita and the Greek O. lassallei (Audisio et al. 
2007, Audisio et al. 2009).

In this paper, the authors focus on Osmoderma barnabita within the Eastern 
clade of the hermit beetle, occurring from Northern Greece across Eastern parts of 
Europe and Western Russia to South West Finland (see Audisio et al. 2007, 2009). 
Focusing on a partial sequence of the mtDNA COI gene from individuals across 
Europe, the aim is to (i) test whether Hewitt’s paradigm (Hewitt 1996, 1999, 2000, 
2004) applies to this species, (ii) examine the partitioning of mtDNA haplotype 
diversity amongst regions, (iii) propose possible processes based on the patterns 
found and (iv) make an inference to the implications of these patterns and processes 
for conservation.
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Material and methods

Sample collection

To obtain comprehensive material from the full range of O. barnabita, three sources 
were used: samples of hind leg tarsus or tibia from live beetles sampled in Latvia and 
Finland (n=186), previously published sequences from GenBank (n=3) and new se-
quences from dry-mounted and ethanol-stored museum specimens (n=7). In total, 
material was obtained from 196 individuals collected in 9 countries (Figure 1; Table 1; 
Suppl. material 1).

Non-destructive sampling was achieved by pheromone trapping (in Finland and 
Latvia); for a trap description see Landvik et al. (2016a). As pheromone, +-gamma-de-
calactone (W236012-25G-K, Sigma-Aldrich®, SAFC®, St. Louis, USA) was applied, this 
being a genus-specific pheromone released by the males (Larsson et al. 2003, Svensson 
et al. 2009, Zauli et al. 2016). Samples consisting of a hind leg fragment were taken 
from live beetles which were released after sampling. Leg fragments were preserved in 96 
vol-% purified ethanol and stored at a temperature of -18 °C ±2 °C before DNA extrac-
tion. The majority of all specimens (n=186) was collected in two areas: Finland (n=97) 
and Latvia (n=89). The Finnish samples were collected in summer 2011 and 2012 in 
the Turku city region, within a single sampling area of 8.3km² encompassing Ruissalo, 
Artukainen, Jänessaari, Muhkuri, Pansio and Runeberg Park. The Latvian samples were 
collected in an area of 4.1km² in the Pededze Valley (see Suppl. material 1: Table A1).

Museum specimens (total n=7), from single locations, were obtained on request 
from Central and Eastern European museums (Figure 1, Table 1; data from Estonia, 
Hungary, Romania and Russia). Data obtained from GenBank included three previ-
ously published sequences from Croatia, Germany and Slovakia (see Suppl. material 
1: Table A1; Audisio et al. 2009). A specimen collected from Greece (Audisio et al. 
2009) was removed from the final analysis due to doubts regarding its species iden-
tity. A set of fifteen previously published sequences from Poland (n=8) and Finland 
(n=7) were not used in the final dataset, as they were clearly shorter (255 bp lesser) 
than the rest of the sequences used here (cf. Svensson et al. 2009), or offered shorter 
reads of clean sequence than the rest of the sequences used (cf. Landvik et al. 2013).

DNA extraction, amplification and sequencing

Total DNA was extracted from leg samples using the Macherey-Nagel NucleoSpin 
Tissue kit following the manufacturer’s instructions. To amplify a more diverse frag-
ment (approx. 800 base pairs) than the most commonly used ‘barcoding region’ 
(Hebert et al. 2003a) of the mitochondrial COI gene, a primer pair (COI-Ob2 f: 
TGATTATTTTCGACAAACCACAAA and COI-Ob2 r: TTGCATAGATTATTC-
CTAATGTGC) was designed by using previous Osmoderma barnabita mtDNA COI 
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500 km

Baltic region and Russia (BRR)

Central and East Europe (CEE)

South West Finland (FIN)

Figure 1. Sampling sites of Osmoderma barnabita and of CO1 haplotypes within regions. The regional 
sub-populations defined in the text are indicated by hatched areas. Sampling sites are identified by open 
circles.

sequences from GenBank (see Audisio et al. 2009, Landvik et al. 2013). For PCR, 
KAPA2G Robust HotStart ReadyMix was used with a reaction volume of 12.5µl reac-
tion, wherein the concentration of primers was 0.2µM and DNA 3µl. The thermal 
profile of PCR was: first 95°C for 3min, then 95°C for 15s, 52°C for 15s, 72°C for 30s 
for 40 cycles and finally 72°C for 5min and 10°C for 2min. Successful amplicons were 
Sanger-sequenced by Macrogen Europe, Amsterdam.
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Table 1. Origin of sequence data used in this study (*reared individual). Sequenced specimens were 
collected from Central, Eastern and Northern Europe. The main part of the dataset (N=193) consists of 
new sequences (GenBank accession codes: KY362552–KY362744), with additional material obtained 
from Audisio et al. (2009). Extended information of sampled individuals (e.g. GenBank accession codes) 
is provided in Suppl. material 1: Table A1.

Country Location Collecting dates Coordinates No. 
individuals Reference

Croatia Plitvice Lakes Nat. Park 30.7.2002 44°52'N, 15°34'E 1 Audisio et al. 2009
Estonia Koiva woodland n.a. 57°40'N, 26°15'E 1 current study

Finland Turku region 18.7–1.8.2011 
and 4–30.7.2012 60°25'N, 22°09'E 97 current study

Germany Saxony, Hagberg 12.6.2005 51°32'N, 14°38'E 1 Audisio et al. 2009
Hungary Győr, Győr-Moson-Sopron 20.1.2011* 47°42'N, 17°36'E 1* current study
Hungary Sárvár, Vas county 28.7.2008 47°17'N, 16°57'E 1 current study
Latvia Pededze Valley 5–26.7.2011 57°30'N, 26°53'E 89 current study
Slovakia Zvolen, Dobrá Niva 7.2006 48°28'N, 19°06'E 1 Audisio et al. 2009
Romania Roades, Brasov 12.7.2012 46°04'N, 25°03'E 1 current study
Russia Tolmachevo 23.6.2011 58°51'N, 29°52'E 3 current study

Genetic data analysis

Estimation of haplotype relationships and genetic population structure

MtDNA sequences were edited with Geneious v8.1.7 (Kearse et al. 2012) to a length of 
759 base pairs and aligned for analyses using MUSCLE (Edgar 2004). A minimum span-
ning network (MSN) of mtDNA COI haplotypes was constructed using package pegas 
(Paradis 2012) in R statistics version 3.1.2 (R Development Core Team 2015). For analy-
ses, Europe was split into three main regions from which samples were available: i) the 
Baltic region including Western Russia (BRR=Latvia, Estonia and Western Russia); ii) 
Central and Eastern Europe (CEE=Croatia, Germany, Hungary, Slovakia and Romania) 
and iii) South-West Finland (FIN=Turku region). Genetic diversity within these regional 
populations was assessed based on estimates of haplotype number (hn, the total count of 
different haplotypes), haplotype diversity (h), mean pairwise difference of nucleotides (ī) 
and nucleotide diversity (π) as calculated in DnaSP version 5 (Librado and Rozas 2009). 
High values of these indices are directly proportional to high levels of genetic diversity 
and, for example, high h coupled with low p is indicative of a high number of unique 
haplotypes, often resulting from a recent expansion (Rogers 1995).

Changes in historical population size

Historical signatures of population growth were assessed for the entire dataset by com-
paring the observed distribution of pairwise differences between haplotypes and the 
expected results under a constant population size model, a sudden-demographic expan-
sion model and a spatial-demographic expansion model. Statistically significant differ-

http://www.ncbi.nlm.nih.gov/nuccore/KY362552
http://www.ncbi.nlm.nih.gov/nuccore/KY362744
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ences between observed and simulated expected distributions were evaluated with the 
sum of the square deviations (SSD) and Harpending’s raggedness index (hg) (Rogers 
and Harpending 1992, Harpending 1994). The constant population size model was 
run in DnaSP version 5 (Librado and Rozas 2009) and the expansion models were 
run in Arlequin version 3.5 (Excoffier and Lischer 2010). Additional evidence of his-
torical population expansion was obtained from neutrality tests sensitive to population 
fluctuations; Tajima’s D (Tajima 1989), Fu’s FS (Fu 1997), Ramos-Onsis & Rozas’ R2 
(Ramos-Onsis and Rozas 2002) and comparison of diversity indices (h, π). All statistics 
were calculated using DnaSP version 5 (Librado and Rozas 2009). The significance of 
all statistics was assessed with 10000 coalescent simulations. Tajima’s D and Ramon-
Onsis & Rozas’ R2 are able to detect population expansions from a small sample size, 
while Fu’s FS can be more effective when analysing large samples with a rapid coalescent 
time (Fahey et al. 2014). Significantly negative departures from zero for Tajima’s D and 
Fu’s FS values may indicate population expansions (Tajima 1989, Fu 1997, Drummond 
and Rambaut 2007).

Results

COI diversity and substructuring

This dataset of 196 mtDNA COI sequences included a total of 26 unique haplotypes. 
All haplotypes were closely related to each other and separated by only one to four mu-
tations from the central COI haplotype (H5; Figure 2). Despite this overall similarity, 
haplotypes from different geographic regions occupied different and non-overlapping 
parts of the minimum-spanning network (Figure 2), suggesting strong phylogeograph-
ic structuring amongst regions. Haplotype diversity also differed substantially amongst 
regions. In the northernmost population (Finland), only a single haplotype was de-
tected despite an extensive sampling effort (N=97), whereas in the region South of it, 
19 haplotypes were detected in a similar-sized sample (N=93; Figure 2). Overall, hap-
lotype diversity (h) increases southwards, with values for sub-populations ranging from 
0 in Finland to 1 ± SD 0.0093 for haplotypes from different regions (CEE; Table 2). 
Correspondingly, the mean pairwise difference amongst mtDNA sequences from a 
given region (Figure 1) was highest in Central and Eastern Europe but naturally zero 
in the Finnish population (Table 2). Variation in nucleotide diversity (π) reflected this 
overall trend, again ranging from zero in the Finnish site to maximum values in the 
region of Central and Eastern Europe (CEE; Table 2).

Changes in historical population size

All tests applied suggested that either population expansion or pronounced selection had 
occurred. Values of both Tajima’s D (D=-1.9575, P=0.002) and Fu’s FS (FS=-22.2775, 
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Table 2. Mitochondrial DNA CO1 sequences variation in Osmoderma barnabita. Estimates of genetic 
diversity amongst regions, with the following metrics identified: N= regional sample size (number of 
individuals), hn= number of distinct haplotypes, h= haplotype diversity, P= polymorphic sites, ī= mean 
pairwise genetic differences (uncorrected p distances), π= nucleotide diversity. Calculations are based on 
a sequence length of 759 bp.

Area N hn h (mean ± s.d.) P ī (mean ± s.d.) π (mean ± s.d.)
FIN (Turku region, Finland) 97 1 0 0 0 0
BRR (Baltic region and Russia) 93 19 0.771 ± 0.0019 17 1.3478 ± 0.8428 0.0018 ± 0.0012
CEE (Central and Eastern Europe) 6 6 1.000 ± 0.0093 10 3.3300 ± 1.9861 0.0044 ± 0.0030
BRR and CEE combined 99 25 0.798 ± 0.0400 25 1.5811 ± 0.9490 0.0021 ± 0.0014
Pooled sample 196 26 0.705 ± 0.0300 26 1.3201 ± 0.8262 0.0017 ± 0.0012

P>0.001) were negative and statistically significant, thus indicating either an expansion 
or strong selection within the overall population of O. barnabita. Population expan-
sion was further confirmed by significant values of Ramos-Onsis’ and Rozas’ statistics 

Figure 2. Minimum spanning networks presenting 26 haplotypes in O. barnabita. The size of each 
circle corresponds to its relative frequency in the total sample. The number in each circle offers a unique 
identifier for each haplotype (H1-H26). Haplotype samples collected from the Baltic region and Russia 
(BRR: Estonia, N= 1, H5; Latvia, N= 89, H5, H10-26; Russia, N= 3, H5, H8) are coloured in orange, 
from Central and Eastern Europe (CEE: Croatia, N= 1, H1; Germany, N= 1, H2; Hungary, N= 2, H6, 
H7; Slovakia, N= 1, H3; Romania, N= 1, H9) in light green and Finnish samples from the Turku region 
(FIN, H4: Artukainen, N= 3; Jänessaari, N= 4; Muhkuri, N= 7; Pansio, N= 1; Ruissalo, N= 81; Runeberg 
Park, N= 1) in dark blue, with haplotype numbers in white. Smaller black dots on lines between individual 
haplotypes indicate the number of mutation steps separating them.
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(R2=0.0257, P=0.029). This analysis of mismatch distributions revealed significant 
Harpending’s raggedness (hg=0.0275, P=0.025), again implying that the null hypoth-
esis of constant population size can be rejected. Turning to the two models of sud-
den demographic expansion versus spatial expansion model, neither could be rejected 
(SDD=0.0011, P=0.770; hg=0.02747, P=0.79; SDD=0.0006, P=0.820; hg=0.02747, 
P=0.90). Thus, the patterns seem compatible with either model.

Discussion

The current distribution of haplotype diversity in O. barnabita seems consistent with a 
recent expansion through Eastern Europe. As a result of these historic processes, haplo-
type diversity decreased from the South northwards to a single haplotype present in the 
northernmost population. Distinct haplotype clades were found within different parts 
of Europe, suggesting strong phylogeographic structuring amongst regions. Each of 
these findings has implications for the conservation and management of this flagship 
species, as will be further discussed below.

Historic population expansion in O. barnabita

The current distribution of mtDNA haplotypes in O. barnabita seems highly indica-
tive of demographic expansion. Overall, the haplotype network showed a star-shaped 
topology as characteristic of population expansion after a bottleneck, wherein newer 
mutations form groups of (mostly) lower-frequency haplotypes budding from a cen-
tral haplotype (Figure 2; see Slatkin and Hudson 1991, Avise 2000, Charlesworth 
and Charlesworth 2012, Fahey et al. 2014). All tests of expansion proved significant 
and attested to a rapid growth of the European population. Different regions within 
Europe were characterised by different and non-overlapping haplotypes (cf. Figures 1 
and 2), which could have been partly caused by low sampling intensity in more south-
ern regions. Nevertheless, the main pattern of expansion seems more compatible with 
colonisation followed by diversification in situ than with the expansion of an already 
diverse population with gradual decrease of extant diversity along the expansion route. 
The overall network is compatible with colonisation from a founder population, where 
ancestral haplotype diversity has decreased due to repeated bottleneck effects along 
the colonisation route. Regional diversity has later recovered with rapid population 
growth, producing variants surrounding the central haplotype (cf. Figures 1 and 2).

Given the geological history of Europe (Donner 2005), the expansion to more 
northern areas has clearly taken place after the Pleistocene ice ages – since the species 
now occupies regions previously covered by ice (Hewitt 1999, 2000, 2004). During 
the maximum extent of the ice, the species was likely confined to a refugium in the 
Balkan region (Audisio et al. 2007, 2009) or to some unknown cryptic refugium or 
refugia in Central or Eastern Europe (e.g. Stewart and Lister 2001, Schmitt and Varga 
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2012). Thus, in the case of O. barnabita, these results cannot fully rule out the ex-
istence of unknown cryptic refugia. Even so, the current phylogeographic structure 
detected within the species O. barnabita is compatible with general patterns envisaged 
across the genus Osmoderma (Audisio et al. 2007, 2009) and congruent with general 
post-glacial migration patterns in other animals and plants (e.g. Hewitt 2000, Hewitt 
2001, Schmitt and Seitz 2002, Gratton et al. 2008, Dapporto 2010). Given the spe-
cific habitat of O. barnabita in old, hollow trees, the species’ expansion route has prob-
ably followed the northward expansion of old-growth deciduous forests (Ferris et al. 
1998, Hewitt 1999, Drag et al. 2015).

Current haplotype diversity in O. barnabita

Given the imprints of post-glacial history described above, the distribution of mtDNA 
variation within the current range of O. barnabita is characterised by two patterns: 
distinct differences in the haplotype composition of different regions and a marked 
decrease of genetic diversity towards the North. Both patterns attest to the fact that, 
following the colonisation of regions, later gene flow may have been much too weak to 
homogenise genetic composition.

In terms of genetic diversity, all metrics of diversity decreased northwards. The 
highest levels of mtDNA COI diversity were encountered in Central and Eastern 
Europe (Figure 1). Here, every sampling site revealed some locality-specific haplo-
type (Figures 1 and 2), suggesting high diversity even at a small scale within regions. 
However, many of these samples were too small to merit firm conclusions and more 
extensive sampling could reveal not only more shared haplotypes, but also currently 
unknown central haplotypes.

Beetles in the genus Osmoderma specialise in old deciduous trees (Ranius and Nils-
son 1997, Ranius et al. 2005), a resource which is very patchily distributed across Eu-
rope. Osmoderma beetles appear relatively weak dispersers both amongst trees within 
sites and even more so amongst sites (Ranius and Hedin 2001, Chiari et al. 2013, 
Oleksa et al. 2013), further emphasising the isolation of extant populations. Over-
all, these patterns suggest that the current European population of O. barnabita is 
composed of rather distinct subunits. Importantly, the genetic marker used here was 
selected for the high resolution of mitochondrial loci, linked to their small effective 
population size and high sensitivity to sampling effects (Avise 2000, Avise 2004). Fur-
ther studies will be needed to reveal how these patterns are reflected in nuclear or other 
genetic markers (for a valuable recent resource, see Goossens 2015).

Conservation and management implications

From an applied perspective, two key implications of the reported patterns for the con-
servation and management of O. barnabita have been proposed. First, there might be 
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a need to manage some isolated populations as independent genetic units in different 
parts of the species range, as they may be on different demographic and evolutionary 
trajectories. Second, the solitary northernmost population seems genetically impover-
ished, suggesting a possible risk of limited evolutionary potential.

With regard to local management units, it has been suggested that regionally 
adapted small populations are sensitive to changes in the environment (Ciofi et al. 
2009, Frankham et al. 2009, Allendorf et al. 2013). Each unit should thus be treated 
as potentially unique – and also any reintroductions or transfers amongst populations 
should be carefully considered (cf. Frankham et al. 2009, Allendorf et al. 2013). Yet, 
it is stressed that variation at the single mitochondrial marker locus, used here, may be 
poorly reflective of variation at more selectively relevant loci and that the current pat-
terns should be supplemented by studies of variation at other loci (cf. Goossens 2015) 
– and of variation in phenotypic traits.

When it comes to the genetic diversity of the northernmost population, the cur-
rent low level of diversity suggests that increased attention should be given to genetic 
aspects in managing this unit. Persistent isolation, lack of gene flow, increased rate of 
inbreeding and influence of genetic drift may result in detrimental genetic changes 
which can elevate the regional extinction risk (Frankham et al. 2009, Allendorf et al. 
2013). On the other hand, the purging of deleterious alleles may counter-balance such 
negative impacts (Lande 1988, Haikola et al. 2001, Keller and Waller 2002).

What creates a particular challenge to O. barnabita is the combination of longer-
term, climatically-driven forces with current anthropogenic impact on the environ-
ment. The former process has eroded diversity over time, during the expansion phase 
and the latter is now causing additional isolation for the remaining populations: given 
its specialisation for old deciduous trees, the Osmoderma species complex is currently 
faced with a highly fragmented landscape all over its European range (cf. Ranius et 
al. 2005, Audisio et al. 2007). Many populations of hermit beetle species are cur-
rently confined to small tree patches in agricultural landscapes and urban areas, causing 
conflict between conservation and human interest (Flåten and Fjellberg 2008, Oleksa 
2009, Carpaneto et al. 2010, Stokland et al. 2012, Siitonen and Ranius 2016). Local 
gene pools can only be safeguarded by securing the habitat at a local level. Conserva-
tion and management should focus on improving the quality and amount of the exist-
ing habitat, as the primary needs of efficient species-based conservation (cf. Jansson et 
al. 2009, Manning et al. 2013, Carlsson et al. 2016, Landvik et al. 2016b).

Importantly, the situation of O. barnabita is likely shared by many saproxylic spe-
cies associated with scarce, diminishing and fragmented habitats (Nieto and Alexander 
2010, Stokland et al. 2012). While less explored, other species may suffer from similar 
genetic threats – due to similar, historic population processes (cf. Painter et al. 2007, 
Trizzino et al. 2014, Gouix et al. 2015) worsened by current, anthropogenic habitat 
loss. Insights into the phylogeographic structure of O. barnabita may thus help guide 
future efforts to safeguard the saproxylic fauna of veteran trees. As further steps for 
assessing the conservation status of the Osmoderma species complex in Europe (Nieto 
and Alexander 2010), clear-cut assays of genetic diversity and inbreeding depression 
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amongst Osmoderma populations and comparative studies using complementary ge-
netic markers are suggested. This information may guide efficient recommendations 
on how best to manage these charismatic invertebrate species.
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