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Abstract
The decrease of the habitat is one of the main factors that affect the survival of G. flavomarginatus. This 
study assesses the halophytic grasslands loss over a period of 30 years in the distribution area of the Bolson 
tortoise and the effects of climate change on the habitat suitability of these grasslands and its possible 
impact on this tortoise. Grassland loss was assessed by an analysis of symmetric differences and the habitat 
suitability model was carried out by the method of overlapping layers raster. Our results showed a grass-
land loss of 63.7%; however, our current habitat suitability model points out that much of the grassland 
loss has occurred where the environmental conditions are suitable. These results suggest that anthropic ac-
tivity is a main factor in the habitat disturbance in the study area. Likewise, the models for years 2050 and 
2070 under the criteria RCP 2.6, RCP 4.5, RCP 6.0, suggest that anthropic activity will continue be the 
main cause of the grassland loss. Therefore, considering the association between the Bolson tortoise and 
grassland halophyte Hilaria mutica, which comprises around 60% of its diet, the viability of the Bolson 
tortoise depends largely on strategies aimed at protecting the soil that allow the presence of this grassland.
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Introduction

Climate influences plant and animal distributions due to their requirements related 
to temperature and humidity (Parmesan and Yohe 2003; Root et al. 2005; Walther 
et al. 2005; Lavergne et al. 2006). It has been documented that when climatic factors 
are extreme, these can exceed the level of tolerance of species, preventing the optimal 
expression of their life cycles (Gutiérrez and Trejo 2014). Each species has a tolerance 
interval to diverse environmental factors (Walther et al. 2002; Hardy 2003; Dawson 
and Spannagle 2009); therefore, its distribution depends on their fundamental niche 
and their biological interactions (Pearman et al. 2008).

Climate change and change of land use are two of the factors that most affect 
natural systems (Burroughs 2001; Shafer et al. 2001; Iverson et al. 2008; Harsch et al. 
2009; IPCC 2014). The effect of the climate change is more severe on arid and semiarid 
ecosystems than on humid and semihumid ecosystems (Grime et al. 2008). Thereon, 
it has been mentioned that facing loss of vegetation of the arid zone, the presence and 
animal behavior that feed on desert plants could be modified, generating a decrease in 
the distribution area and in size of their populations (Gandiwa and Zisadza 2010). The 
effects of the transformation of the vegetation, however, are not uniform for all animal 
species (Fahrig 2003). Species’ response to environmental change will be determined 
by their physiology (climatic tolerance), morphology (i.e., body size), ecology (feeding 
habits, habitat selection; nesting sites), dispersal capacity and behavioral characteristics 
(foraging time, general activity). Therefore, there are species with negative responses by 
decreasing its abundance and/or its distribution, as well local extinction (Midgley et 
al. 2007), and other species with positive responses reflected in increasing their abun-
dance and expanding their distribution (Stotz et al. 1996; Thomas et al. 2004; Moritz 
et al. 2008; Lara et al. 2012).

To assess the effect of the climate change on species distribution, ecological niche 
modeling has been used employing different environmental variables and mathe-
matical algorithms that try to simulate the climate niche of a species and represent 
it geographically on a map (Parmesan 2006; Mckenney et al. 2007). In most of the 
studies, on large spatial scales, only climatic variables have been used for predicting 
spatial distribution of the species (Araújo and Peterson 2012; Anadón et al. 2015). 
In some cases, dealing with local spatial scales, soil and orography variables have 
been included (Guisan and Hofer 2003; Pearson et al. 2004; Anadón et al. 2007; 
Marini et al. 2010; Kreakie et al. 2012), for example, the dependence of herbivores 
specialized on some plants (Kissling et al. 2007). Nevertheless, it is very difficult 
to determine spatial data of biological interactions; and for this reason the studies 
where the interactions are used to assess the distribution area of the species are very 
scarce (Pearson and Dawson 2003).

Chihuahuan Desert grasslands provide important resources as habitats and food 
for sustaining a very rich animal diversity (Vickery et al. 1999). However, the deg-
radation of grasslands is one of the main causes of biodiversity loss on a global scale 
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Figure 1. Gopherus flavomarginatus and halophytic grassland Hilaria mutica.

(Gavilán 2008). Given this situation, endemic or native species are the most vulner-
able (Contreras-Balderas et al. 2003). Gopherus flavomarginatus is an endemic tortoise 
species of the Bolson of Mapimí zone of the Chihuahuan Desert in the north-central 
México (Figure 1). The Bolson tortoise is considered vulnerable by IUCN Red List 
(2017). This species inhabits halophytic grasslands of Hilaria mutica on which it 
feeds, presenting an apparently mandatory association (Aguirre et al. 1979). There-
fore, there exists a close interaction between the presence of the grassland and that of 
the tortoise.

Historically, the Bolson tortoise was distributed from the southwestern USA 
to the center of México. However, it is currently confined to the area known as the 
Bolson of Mapimí (Lemos-Espinal and Smith 2007). Considering the low dispersal 
capacity of the Bolson tortoise and its dependence on the halophytic grass H. mu-
tica, a reduction of this grassland, brought about by climate change in the Bolson of 
Mapimí, would be expected having a strong impact on the viability of the tortoise. 
Therefore, the goals of this study are: (i) to estimate the change in halophytic grass-
lands from 1980-2013 period on the current distribution range of G. flavomargi-
natus, (ii) to estimate the projected effect of climate change for the years 2050 and 
2070 on the distribution of halophytic grasslands in the Chihuahuan Desert, and 
(iii) to assess the possible impact of the halophytic grasslands changes on the viability 
of G. flavomarginatus.
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Materials and methods

Study area

The Chihuahuan Desert has an approximate area of 507,000 km2 and elevations from 
800 to 2500 m-asl; it extends from central México northward to southern Texas, Ari-
zona, and New México. The mean annual precipitation varies from 175 to 400 mm. 
The characteristic vegetation is microphyllous desert scrub, rosette desert scrub, cras-
sicaule desert scrub, and grasslands, among others (Rzedowski 1978). About 80% of 
the soils are derived from calcareous materials (Sutton 2000). Halophytic grasslands 
of H. mutica are distributed throughout the Chihuahuan Desert, whereas the tortoise 
occurs only in the central zone, in the region known as Bolson of Mapimí, where the 
Mapimí Biosphere Reserve is located (Lemos-Espinal and Smith 2007).

Zonification of the distribution area of the Bolson tortoise

Sixty one records of G. flavomarginatus were identified, with these points we delimited a 
Minimum Convex Polygon (MCP) of 15,895.5 km2 that represents the distributional area 
of the Bolson tortoise. This polygon was zoned according to the densities of the geographic 
points using the clustering K-means method (Software CrimeStat V. 3.2, 2009).

Influence of the environmental factors on distribution of halophytic grassland

In order to identify loss and gain areas of halophilic grasslands (1980–2013) we used 
a symmetric difference analysis (Software ArcMap V. 10.1; ESRI 2012). The analysis 
was performed by using a quadrant of 32,300 km2 (MCP2) product of add a buffer 
zone of 10 km around the perimeter of MCP. To this quadrant was added information 
of land use and vegetation distribution (INEGI 1991, 2013). Likewise, we provided 
current environmental data (19 climatic layers) with a spatial resolution of 2.5 minutes 
(~5 km2), obtained from Worldclim (Hijmans et al. 2005); The bioclimatic variables 
of Worldclim reflect aspects of temperature and precipitation and have been used suc-
cessfully for niche models (Davis et al. 2008; Jezkova et al. 2009).

Subsequently, within the area MCP2 were settled 232 quadrants out of 100 km2, 

each one. In each quadrant we added the corresponding value for each bioclimatic var-
iable, as well as the information of presence and absence of the halophytic grasslands. 
In order to identify the bioclimatic variables that explain the presence and absence of 
the halophytic grasslands in the study area, was used an analysis of discriminant factors 
(canonical) under the generalized linear model. This analysis was performed using the 
library “MASS” (Venables and Ripley 2002) in the software R (version 3.1.3).
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Habitat suitability models

For modeling the habitat suitability of halophytic grasslands under current climatic 
conditions in the Chihuahuan Desert, we used the retained bioclimatic variables in 
the discriminant analysis. The selected variables were annual mean temperature, mean 
diurnal range, minimum temperature of the coldest month, annual precipitation, and 
precipitation of wettest quarter, as well as substrate texture data (INEGI 2004). Based 
on these variables we performed an analysis of frequencies with the purpose of obtain-
ing the climatic profile (maximum and minimum) of the halophytic grasslands. Later, 
the habitat suitability was modeled using an Additive Overlay Analysis of layer raster 
method (ArcMap V. 10.1), which delimits the potential habitat suitability of one species 
based on knowledge of its climatic profile. To these are given a weighting according to 
the importance of the layer and abundance of the points on the polygon, and the cells 
are extracted from the raster layer by a logical search. Outlet layers contain only the val-
ues of the cells or pixels extracted from the input layer and output layers that were used 
in the superposition processes.

The same climatic profile was used for modeling habitat suitability for the sce-
nario of the climatic change to 2050 and 2070 in the Chihuahuan Desert. We used 
data as scenarios of the climatic change corresponding to the extrapolated with 
Beijing Climate Center Climate System Model (BCC-CSM1-1, this was chosen 
at random from a group of 19 climate models) for the years 2050 and 2070 under 
different Representative Concentration Pathways (RCP): RCP 2.6 = +2.6  W/m2, 
RCP 4.5 = +4.5 W/m2, RCP 6.0 = +6.0 W/m2, and RCP 8.5 = +8.5 W/m2 were used 
as scenarios of the climatic change. Under the scenario RCP 2.6 a minor intensity of 
the effects of the climate changes is expected, while with the scenario RCP 8.5 the 
intensity will be greater (Weyant et al. 2009). The model additive overlay of layer 
raster predict habitat suitability as a function of environmental variables and species 
occurrence data, this habitat suitability is represented by a scale ranging from 0 (low 
suitability) to one (high fitness), we used a cut-off point of 0.5.

The emergence of new technologies and recent assumptions about socioeco-
nomic development, as well as observations of environmental factors such as land 
use and land cover change have been considered in this new generation of scenarios 
(Moss et al. 2010; Rogelj et al. 2012; van Vuuren 2012). The RCPs explicitly explore 
the impact of different climate policies in addition to the no-climate-policy SRES 
scenarios (van Vuuren et al. 2011b) and provide an important reference point to 
investigate the potential implications of climate change on ecosystems (van Vuuren 
et al. 2011a).

For the validation of the model were used the zones with presence of halophytic 
grasslands in the Chihuahuan Desert reported by the Comisión Nacional para el Con-
ocimiento y Uso de la Biodiversidad (CONABIO) (2015).
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Exchange rate

To assess the climate change impact on the habitat suitability of the halophytic grass-
lands we obtained the percentage change for each scenario using the following formula 
(Gutiérrez and Trejo 2014):

% of change = [(S1 – S0)/S0]*100,

Where:
S0, is the total surface of the study area, according to the base scenario.
S1, is the total surface occupied in the study area under change conditions.

Results

Three zones in the distribution area of G. flavomarginatus were identified, these zones 
were classified as “A” with 2,649.99 km2, “B” with 5,472.21 km2, and “C” with 
2,657.11 km2 (Figure 2). The zone “A” coincides with the polygon of the Reserve of 
Mapimí Biosphere, and it is the lesser extension of the three identified zones (Figure 2). 
For MCP2 (quadrant of 32,300 km2), in a period of 30 yrs, we recorded a halophytic 
grasslands loss of 1,286.66 km2 and a gain of 518 km2 (Figure 2); therefore, for the 
year 2013 the extension of the halophytic grasslands in the MCP2 was 1350.44 Km2. 
The transformed Wilks value, obtained from discriminant analysis shows that the null 
hypothesis should be rejected (λ = 0.834, x2 = 56.478, g.l. = 18, p = 0.000); therefore, 
the two discriminant groups (presence and absence) should be considered as distinct.

The current model habitat suitability identifies the greatest part of the localities where 
halophytic grasslands had been reported in the Chihuahuan Desert (CONABIO 2015) 
(Table 1, Figure 3); the projected habitat suitability for Chihuahuan Desert shows that 
habitat suitability loss was relatively low for the scenarios RCP 6.0, RCP 4.5, and RCP 
6.0 for the years 2050 and 2070 (Table 2, Figure 3). However, under the scenario RCP 
8.5 for the years 2050 and 2070 the models of habitat suitability show a loss of 43.18% 
and 89.3%, respectively. Considering the scenario RCP 8.5 for year 2050, halophytic 
grasslands only it remains in B zone; while for year 2070 disappear completely the habitat 
suitability in the current distribution area of the Bolson tortoise (Table 2, Figure 3). Un-
der the scenario RCP 8.5 for 2050 and 2070, the loss of habitat suitability for halophytic 
grassland was much higher than for the rest of the scenarios (Table 2). In RCP 2.6 we 
obtained the lower estimates of reductions of habitat suitability for grasslands.

Discussion

The results of this study show that halophytic grassland loss in the current distribution 
area of G. flavomarginatus has been a continuous process, in as much as in a period of 
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Figure 2. Distribution of gain and loss of the halophytic grassland in an area of 32,300 km2. Black spots show 
populations of G. flavomarginatus; dotted lines show distribution zones “A”, “B” and “C” of the species; the 
black line indicates the Mapimí Biosphere Reserve; dark grey color shows the zones with gain of halophytic 
grassland; light grey color shows the zones of halophytic grassland loss; medium grey color shows areas with 
grasslands that has been maintained; the grid make reference to squares of 100 km2 in the study area. 

30 years its reduction has been 63.7%, with the zone “A” being the most affected. In 
this context, halophytic grasslands loss for the Chihuahuan Desert has been attributed 
to the climatic change and to the anthropic factors (e.g., agriculture and cattle; Vavra 
et al. 1994; Archer et al. 1995; Hodgson and Illius 1996; Aguirre et al. 1997; Moleele 
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Figure 3. Habitat suitability models of the halophytic grasslands projected for Chihuahuan Desert. 
White lines show states boundaries; black lines refer to the Mapimí Biosphere Reserve; blue lines indicate 
distribution zones of G. flavomarginatus.

and Perkins 1998; Van Auken 2000). In this regard, Archer (1994) pointed out that the 
grassland loss is an event that is happening in arid and semiarid ecosystems worldwide; 
while Comstock and Ehleringer (1992) and Cook and Irwin (1992) showed that the 
climate is the main factor to explain the variation in vegetation patterns.

The current habitat suitability model of this study indicates that climatic condi-
tions of the area that showed the highest loss of halophytic grassland inside the known 
distribution range of G. flavomarginatus (zone “A”) are appropriate for the presence 
of this grassland. Data on land use and vegetation presented by Instituto Nacional de 
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Table 2. Change rate of the habitat suitability area for halophytic grassland in Chihuahuan Desert con-
sidering current and future climatic conditions (2050 and 2070) under concentrations of greenhouse 
gases RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5.

Current model Model 
2050

Model 
2070

Model 
2050

Model 
2070

Model 
2050

Model 
2070

Model 
2050

Model 
2070

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5
29,715.73 27,413.14 26,133.87 23,414.74 26,644.12 26,401.96 22,390.37 16,288.26 5,546.78

Change rate (%) -7.74 -12.05 -21.20 -10.33 -11.15 -24.65 -45.18 -81.33

Table 1. Habitat suitability for distribution of G. flavomarginatus considering the different climatic sce-
narios assessed.

Habitat suitability Zone A Zone B Zone C
Current habitat suitability 1,087.99 km2 999.49 km2 594.04 km2

Habitat suitability RCP 2.6-2050 1,087.56 km2 999.48 km2 594.02 km2

Habitat suitability RCP 4.5-2050 1,007.85 km2 1,027.28 km2 0 km2

Habitat suitability RCP 6.0-2050 1,179.83 km2 1,065.37 km2 624.11 km2

Habitat suitability RCP 8.5-2050 143.066 km2 1,023.241 km2 0 km2

Habitat suitability RCP 2.6-2070 1,087.43 km2 999,46 km2 593.92 km2

Habitat suitability RCP 4.5-2070 1,008.61 km2 1,117.54 km2 657.39 km2

Habitat suitability RCP 6.0-2070 921.69 km2 999.77 km2 510.25 km2

Habitat suitability RCP 8.5-2070 0 km2 25.7 km2 0 km2

Estadística y Geografía (INEGI 2013) show that zone “A” and its surroundings pre-
sents a strong agricultural and cattle impact. Likewise, it has been noted that reduction 
and fragmentation of the vegetation cover in the Natural Protected Area of Mapimí 
Biosphere placed inside Zone “A” is caused by overgrazing (CONANP 2006). In this 
manner, based on this information, it is possible to point out that beyond the influ-
ence of the environmental factors in determining the presence or absence of halophytic 
grassland, anthropic activities are the main factors that are influencing the loss of this 
grassland in the current distribution area of the Bolson tortoise by causing fragmenta-
tion of this corridor route of halophytic grassland among zones A, B, and C.

In this context, it has been documented that changes in vegetal species distribution 
promote that animal species also modify their behavior and distribution (Gurd et al. 
2001; Steffan-Dewenter et al. 2002). However, when individuals of one species are not 
able to disperse and colonize new areas with suitable habitat quality or do not possess 
a wide range of physiological tolerance, their extinction is highly likely (Holt 1990; 
Kattan and Murcia 2003; Brooks et al. 2004; Uezu et al. 2005; Wilcox and Thurow 
2006). In this regard, it has been pointed out that this situation is frequently observed 
in specialist species (Gascon et al. 1999). For example, it has been documented that 
grassland fragmentation in the Chihuahuan Desert has affected the biological biodi-
versity causing isolation and reduction in 60% of the bird populations that inhabit 
grasslands (Desmond et al. 2005). Likewise, in Cynomys mexicanus, an endangered 
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mammal and strongly associated with halophytic grassland in the Chihuahuan Desert, 
it has been seen that the distance among colonies of this species increase with the grass-
land fragmentation preventing natural dispersal and the interactions of the animals 
among populations (Yeaton and Flores-Flores 2006).

For the lizard species Uma exul and Uma paraphygas, it has been reported that their 
specificity on dune ecosystems and their low dispersal capacity reduce the probability 
of migration to places where the habitat conditions are suitable to live. These two spe-
cies show very low genetic variability; therefore, it has been pointed out that these spe-
cies are in critical condition because of the transformation of their habitat (Gadsden et 
al. 1993; Gadsden 1997; Ballesteros-Barrera et al. 2007). Likewise, since 1987, in 20 
of 50 amphibian species of cloud forest from Monte Verde, Costa Rica, including the 
endemic Golden Frog (Incilius periglenes), as well as species of the Anolis genus have 
disappeared because of habitat fragmentation (Schneider 1999).

Accordingly, considering the association between Bolson tortoise and the halo-
phytic grass H. mutica that comprises 60% of its diet (Aguirre et al. 1979), and taking 
into account the decreased food availability in the environment, the Bolson tortoise 
tends to reduce its home range (Hoogland 2006). Therefore, its low dispersal ability 
(Ureña-Aranda et al. 2015), low genetic variability (Ureña-Aranda and Espinosa de 
los Monteros 2012), and fragmentation and loss of grassland H. mutica are the main 
threats for the Bolson tortoise, because these factors favor isolation of the populations 
of this tortoise by intensifying the low genetic variability of the species. These condi-
tions promote less resistance to extreme temperatures, drought events, change in food 
availability, emerging diseases, among other features, thus causing population extinc-
tion (Hoelzel et al. 2002; Russello et al. 2004; Zhang et al. 2004).

On the other hand, expectations of climate change for years 2050 and 2070 under 
scenarios RCP 2.6, RCP 4.5, and RCP 6.0 show a slight decrease in habitat availability 
for halophytic grassland in the Chihuahuan Desert, zones A and B, however show rela-
tive stability. This suggests that fragmentation of halophytic grassland in the range of the 
Bolson tortoise will depend on the change in land use. Under conditions of a pessimistic 
scenario (RCP 8.5) change rate of the habitat suitability area for halophytic grassland in 
the Chihuahuan Desert for years 2050 and 2070 will be of -45.186 and -81.333%, re-
spectively. Under this scenario the viability of the Bolson tortoise is heavily compromised.

In conclusion, viability of the Bolson tortoise will depend on the strategies of 
protection and the land conservation allowing for the presence of halophytic grass-
land composed of H. mutica. In this regard, conservation programs for the Bolson 
tortoise and its habitat currently are addressed mainly within the Mapimí Biosphere 
Reserve; however, according to the available evidence, this zone is strongly affected by 
anthropogenic factors. Likewise, monitoring programs of the populations and habitat 
conditions of the Bolson tortoise are performed in an area of 1 km2 scattered inside 
the Protected Natural Area (CONANP 2016). Faced with this situation, conservation 
programs of the habitat are needed for allowing connection of the populations inside 
and outside the Protected Natural Area. Therefore, we propose protection of the A, B, 
and C zones and the connections among them, so that in this way genetic interchange 
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among populations can be favored. On the other hand, due to threats of climate 
change, it is necessary to develop an ex situ conservation program for G. flavomargi-
natus as well as the conservation of the area that show a habitat suitability outside the 
current distribution range of the Bolson tortoise, thinking about reintroduction of the 
species. Also, it is necessary to point out that the algorithms of potential area of habitat 
suitability involve a certain level of uncertainty that becomes worse in the projections 
to simulated scenarios (Pearson et al. 2006). However, we consider that our results 
provide an early warning about the possible consequences of the current activities on 
land use and the climate change due to increasing temperature.
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