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Abstract
Spatially-explicit optimal reserve design models select best sites from a set of candidate sites to assemble 
nature reserves to protect species (or habitats) and these reserves display certain spatial attributes which 
are desirable for species. These models are formulated with linear 0–1 programming and solved using 
standard optimisation software, but they were run on different platforms, resulting in discrepant or even 
conflicting messages with regard to their computational efficiency. A fair and accurate comparison of the 
convenience of these models would be important for conservation planners who use these models. In this 
article, we considered eight models presented in literature and tested their computational efficiency using 
randomly generated data sets containing up to 2000 sites. We focused on reserve contiguity and compact-
ness which are considered crucial to species persistence. Our results showed that two of these models, 
namely Williams (2002) and Önal et al. (2016), stand out as the most efficient models. We also found that 
the relative efficiency of these models depends on the scope of analysis. Specifically, the Williams (2002) 
model solves more of the test problems when contiguity is the only spatial attribute and a large subset 
of the candidate sites needs to be selected. When compactness is considered also, the Önal et al. (2016) 
model generally performs better. Large scale models are found to be difficult to solve in a reasonable period 
of time. We discussed factors that may affect those models’ computational efficiency, including model size, 
share of selected sites, model structure and input data. These results provide useful insight and guidance to 
conservation practitioners and researchers who focus on spatial aspects and work with large-scale data sets.
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Introduction

Anthropogenic activities have caused tremendous impacts on ecosystems all over the 
world. These impacts include but are not limited to environmental pollution, habitat 
loss and fragmentation, invasion of exotic species and climate change (e.g. Aplet and 
McKinley 2017). These impacts led to an increased rate of extinction of species and 
impaired the services that ecosystems have been providing to humans. Establishing 
nature conservation reserves have been adopted across the globe as a direct way to 
restore ecosystems and protect species. However, resources devoted to this purpose 
such as land and budget have always been scarce and they often face conflicting de-
mands from other sectors of society such as housing and industry. With the aim of 
designing ecologically effective and economically efficient nature reserves comes the 
science of reserve design (Kingsland 2002).

The reserve design problem is defined as selecting a subset from a larger set of 
candidate sites to assemble nature conservation reserves to provide adequate protec-
tion to targeted species or habitats. This problem has been studied using various ap-
proaches, including site scoring (e.g. Pressey and Nicholls 1989), gap analysis (e.g. 
Scott et al. 1993), heuristics (e.g. Pressey et al. 1997) and formal optimisation (e.g. 
Possingham et al. 2000, Williams et al. 2004). Gap analysis and heuristics have been 
widely used both in academic research and conservation practices, primarily because 
they are intuitive, easy to use and computationally convenient. Some popular nature 
reserve design software such as Marxan and C-plan use heuristics as their major solu-
tion algorithm (Ball et al. 2009, Sarkar 2012). However, it has long been demonstrat-
ed that these techniques find optimal solutions only occasionally and often generate 
solutions which significantly deviate from the optimal ones (Önal 2003, Williams et 
al. 2005). This means that they may not be allocating scarce conservation resources 
in the best possible manner. The problem can also be formulated as an optimisation 
model, specifically as a linear mixed integer programme (MIP), to determine the 
best selection of sites while meeting the conservation goals. The resulting model can 
be solved using MIP solvers such as CPLEX and GUROBI integrated in off-the-
shelf mathematical modelling software such as GAMS and AMPL (AMPL 2016, 
GAMS 2016). Finding the best possible solution helps guarantee efficient allocation 
of conservation resources. Due to this advantage, optimal reserve design models have 
received substantial attention since the 1990s.

The early optimisation formulations of the reserve design problem adapted the 
set covering and maximal covering frameworks well known in the operations research 
literature (Cocks and Baird 1989, Underhill 1994, Camm et al. 1996, Church et al. 
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1996, Ando et al. 1998). These initial formulations neglected spatial attributes of the 
reserve, usually ending up with a solution where selected sites are highly scattered over 
the landscape and far apart from each other. A reserve with such a spatial configura-
tion is not very meaningful in practice because both species survival and reserve man-
agement benefit from a spatially coherent reserve. The second generation optimum 
reserve design models incorporated spatial attributes to improve the coherence and 
functionality of the reserves (Williams et al. 2005). Amongst the spatial attributes 
discussed in literature, the most important ones are spatial contiguity (or connectivity) 
and compactness of the selected sites. Spatial contiguity means that any two sites in 
the reserve can be linked by a path of selected sites. Compactness is a more difficult 
concept to define, but, in general, it means that the selected sites must be close to each 
other (or grouped together) to the greatest possible extent. Some studies used the total 
distance between pairs of selected sites and the boundary length of the reserve as proxy 
measures for compactness. These two spatial attributes have been successfully modelled 
using graph theory, network flow theory and mathematical techniques (see Williams 
et al. 2005, Moilanen et al. 2009, Billionnet 2013 for reviews of those studies). Incor-
porating these spatial attributes into the optimisation frameworks requires more com-
plex formulations, however, including a large number of additional variables and con-
straints. Thus, the reserve selection problem gets computationally more difficult when 
spatial configuration is of concern. For instance, a set covering formulation involving 
thousands of candidate sites could be solved in seconds (Rodrigues and Gaston 2002), 
but a compactness model involving about 700 sites could not be solved to optimality 
within 10 hours (Fischer and Church 2003).

Several modelling approaches have been introduced in the reserve design litera-
ture to incorporate spatial aspects in site selection. Due to their differences in struc-
ture and size, those models differ in their computational performance. Moreover, 
individual models were run on different platforms with different CPU speeds and 
solved using different MIP solvers and, therefore, it is not clear how those models 
compare to each other in terms of their computational efficiency. A fair and accu-
rate comparison of the convenience of these models would be important for on-the-
ground conservation practitioners. This is the main motivation for this article. For 
this purpose, we selected eight optimisation models incorporating (or could incorpo-
rate easily by proper modification) contiguity and compactness and conducted com-
putational experiments with these models by running them on the same computer 
and using the same data sets that were generated randomly. We aimed to answer two 
questions: i) how do these models perform in solving contiguity and compactness 
problems with different sizes and ii) what are the likely factors affecting their com-
putational efficiencies?

We carried out the tests on a Lenovo desktop computer with Intel Pentium (R) 
CPU of 2.8 gigahertz and RAM of 8.0 gigabyte and the operation system was Win-
dows 64-bit. As the MIP solver, GUROBI 5.0 integrated in GAMS 23.9 was used.
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Material and methods

Contiguity models

Table 1 summarises the eight models we tested. The ‘Algebraic formula’ column of the 
table presents the basic algebraic formula used to ensure spatial contiguity.

Some of the models were not originally proposed for reserve design purposes or did 
not consider the cost of site selection. We made necessary modifications to those models 
so that they are applicable to the reserve design problem we address here. The objective 
of all the models is stated as the minimisation of the total cost of site selection, namely:

Minimize ∑
i
 ciUi

 (1)

where Ui is a binary variable which equals 1 if site i is selected and 0 otherwise and 
ci is the cost of selecting site i.

Those models, not originally proposed for reserve design problems, are extended 
by adding the species coverage constraint described below:

∑
i
 eiUi

 ≥ p (2)

where ei is the population size of target species in site i; and p is the targeted (mini-
mum viable) population of target species. This constraint is supposed to ensure a long-
term survival chance for target species.

The Miller et al. (1960) model is modified as below to control the formation of 
arcs between selected sites.

Xij + Xji ≤ Ui for all i<j, j∈Ni (3)

Xij + Xji ≤ Uj for all i<j, j∈Ni (4)

∑
j∈Ni

Xij
 ≤ Ui for all i (5)

∑
i
 ∑
j∈Ni

Xij
 =∑

i
 Ui

 − 1 (6)

where Xij is a binary variable which equals 1 if an arc directs from i to neighbour j 
and 0 otherwise and Ni is the set of i’s neighbour sites. For details, see Williams (2002).

We first generated ten hypothetical data sets. Each data set considers a 10*10 grid 
partition including one hundred sites. The distribution of species over these sites was 
generated by using a uniform distribution function with the range of [0, 5], which 
means that the population size (ei) in each site takes an integer value between 0 and 5. 
We generated the selection cost (ci) similarly using the range of real numbers [1, 10]. 
We assigned a different value to the target population size (p) in each data set, where p 
is calculated by p=α*n where n=100 is the number of candidate sites and  α  is a popula-
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Table 1. Mechanisms used to ensure contiguity and algebraic formulae of the eight models used in the 
computational efficiency tests.

Model 
number Mechanism to ensure contiguity Algebraic formula References

1

An arc can direct from node i to 
neighbour node j only if the value 
assigned to i is less than the value 

assigned to j, so an arc directing away 
from a node will not return to it and 

therefore loops are prevented.

(1)-(6);

Y
i
 − Y

j
 + nX

ij
 ≤ n − 1 i≠j, j∈Ni

Miller et al. (1960); 
Duque et al. (2011)’s 

TreePRM model.

2

Two trees are formed, one in primal 
graph, the other in dual graph, the 

interwoven structure of these two trees 
prevents the formation of loops.

(1)-(6);
(2)-(4) in Williams (2002). Williams (2002)

3

One selected site serves as a sink, every 
other selected site provides one unit of 
supply to the flow and all flows finally 

reach the sink.

(1) and (2);
(1)-(3) in Shirabe (2005).

Shirabe (2005, 2009); 
Duque et al. (2011)’s 

FlowPRM model

4

The tail length of a selected site equals 
the number of arcs linking to it and 

that length is strictly larger than that of 
the site’s preceding sites.

(1)-(2);
(3)-(7) in Önal and Briers (2006). Önal and Briers (2006)

5

Solve a relaxed problem first with no 
contiguity constraints. If a cycle occurs, 
apply an inequality (a cut) to that cycle 
and solve again until there is no cycle 

in the solution.

(1)-(6);
(8) in Önal and Wang (2008). Önal and Wang (2008)

6

An amount of flow is injected into 
the partition from an outside node, 
each selected site consumes one unit 
of flow, residual flow is absorbed by a 

predefined variable.

(1) and (2); (5)-(8) in Conrad et 
al. (2012). Conrad et al. (2012)

7

Capital flows from the supply node 
to trans-shipment nodes and for each 
selected site, capital can come into it 
from only one of its adjacent sites.

(1) and (2);
(2)-(7) in Jafari and Hearne 

(2013).

Jafari and Hearne (2013); 
Jafari et al. (2017)

8

If a site is selected then at least one 
of its adjacent sites, which is nearer 
(structurally or functionally) to the 

centre, must also be selected.

Minimize ∑
k 

∑ 
i

    c
i
X

ki
;(2),(4),(6)

and (8) in Önal et al. (2016).

Önal et al. (2016);  
Wang and Önal (2016)

tion coefficient ranging from 0.25 to 2.5 with an increment of 0.25 (thus, a population 
between 25 and 250 individuals must be protected in the reserve and a larger  α  implies 
a larger reserve area). By designing reserves with different areas, we intend to test the 
impact of the number of selected sites on computational efficiency.

To eliminate the impact of input data on the test result, for each value of  α  we 
generated 50 data sets, each with a different distribution of species and selection cost 
across the 100 sites and used in a different run. To save time in the test and avoid tying 
the computer to a long computational time, in each run we imposed a one-hour maxi-
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mum processing time limit. The total time limit for all runs was limited to 2 hours (i.e. 
the programme was terminated if it took more than 2 hours to complete the 50 runs). 
Average CPU times in completed runs were reported.

Contiguity and compactness models

The Önal et al. (2016) model and the Williams (2002) model were modified and used 
in the contiguity and compactness test because these two models were found to be the 
most efficient models in the above contiguity test. We modified the objective function 
of the Önal et al. (2016) model as below so it incorporated selection cost which is an 
important factor in reserve design practices:

Minimize ∑
k
 ∑

i
 dkiXki

 + ∑
k 
∑

i
 ci Xki

 (7)

where Xki is a binary variable which equals 1 if site i is selected into the reserve 
which is centred at site k and dki is the distance between centre site k and selected site 
i. The first part of (7) is the total distance between the cluster centres and selected sites 
and the second part is selection cost. These two components can be given different 
weights to reflect their importance in site selection; for computational purposes, we 
used the same weights (=1.0).

In the Williams (2002) model, we made the following modifications to incorpo-
rate compactness assuming that compactness is measured by total pair-wise distance 
between selected sites (Önal and Briers 2002).

Min ∑
i
 ∑

j>i
 dijWij

 + ∑
i
 ciUi

 (8)

s.t.:

Wij ≥ Ui + Uj − 1 for all i<j (9)

where Wij is a binary variable which equals 1 when sites i and j are both selected 
and 0 otherwise. The first part of (8) represents reserve compactness while the second 
part is the cost of site selection. Constraint (9) relates Wij to the site selection variables.

Results

Contiguity: the 100-site problem

The computational results of the 100-site contiguity problem are summarised in Table 2 
(for clarity reasons, we only report results with populations (p) of 50 to 250 with an in-
crement of 50). Except Williams (2002) and Önal et al. (2016), all models encountered 
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computational difficulty when solving the problem. That is, at least in one run, they 
could not find the optimal solution within an hour. The Miller et al. (1960) model com-
pleted only two runs in 2 hours in most population settings. The Shirabe (2005) model 
encountered difficulty in two population settings (p=100 and 150), in which most other 
models also encountered computational difficulty. These results are consistent with the 
findings of Duque et al. (2011) who applied these methods in a districting problem and 
found that the model adapted from Shirabe (2005) was fastest while their own models 
could not solve a 49-site districting problem in 3 hours.

The models of Önal and Briers (2006) and Jafari and Hearne (2013) completed 
only two runs in 2 hours in, respectively, three and two population settings (for Önal 
and Briers (2006) model, these settings are p=100, 150 and 200 and for Jafari and 
Hearne (2013) model, the settings are p=100 and 150). The models of Önal and Wang 
(2008) and Conrad et al. (2012) are better in the sense that they completed more runs 
in most population settings.

The Williams (2002) and Önal et al. (2016) models stand out as the fastest 
amongst the eight models and completed all 50 runs within the allowed time limits 
(each run was completed in less than one minute of processing time). The Williams 
(2002) model took 0.1 second to about 50 seconds to solve those problems, while the 
model of Önal et al. (2016) seems a little faster, in most settings using less than 10 
seconds except one case where it used an average of 12.0 seconds.

All models, except the Önal et al. (2016) model, solved the problem relatively 
easily when a very large or very small population was to be covered (equivalently, 
a very large or very small number of sites need to be selected). A similar result was 

Table 2. Computational efficiency of alternative contiguity models in solving a 100-site problem.

Models
Population size to be covered in the reserve

50 100 150 200 250
Miller et al. (1960) 136.9 >3600.0 a >3600.0 a >3600.0 a >2400.0 b

Williams (2002) 9.0 50.8 20.2 3.0 0.1c

Shirabe (2005) 64.2 >969.1a >477.1a 47.0 0.1c

Önal and Briers (2006) >2024.3 a >3600.0 a >3600.0 a >3600.0 a >2400.6 b

Önal and Wang (2008) >505.6 a >944.4 a >824.2 a >2405.3 a >1224.9 b

Conrad et al. (2012) >1854.8 a >2551.1 a >2026.5 a >123.5 a 0.2 c

Jafari and Hearne (2013) >1905.5 a >3600.0 a >3600.0 a >311.8 a 0.9 c

Önal et al. (2016) 12.0 5.3 3.3 4.2 6.6 c

a: 2 to 50 runs were completed within the total time limit (2 hours). These values are averages of the CPU 
times used in completed runs.
b: 3 to 11 runs were completed within the total time limit (2 hours), amongst which 1 to 5 runs were 
infeasible due to high coverage requirement and/or inadequate species occurrence. The reported values 
are averages of the CPU times used in feasible runs. The “>” indicates that at least one run could not be 
completed within 1 hour.
c: 22 runs were infeasible. These values are averages of the other feasible 28 runs.
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reported by Williams (2002) also. The Önal et al. (2016) model was computation-
ally steady regardless of the population size specification (the run times were in the 
range of 3.3–12.0 seconds).

Contiguity: larger size problems

Having observed that, in the 100-site test problems, the Williams (2002) and Önal 
et al. (2016) models are substantially more efficient than the other models, in the re-
maining test runs we compared these two models against each other in solving larger 
problems that involved 200 to 2000 sites. We relaxed the optimality requirement by 
setting the relative gap (percentage difference between the incumbent solution and 
the best possible solution) at 1 percent level (instead of 0 percent, no gap) to avoid 
long processing times that might possibly be needed to solve large problems to exact 
optimality (this is done in GAMS by writing a simple code option optcr=0.01). Table 3 
reports the results for different model sizes.

The Williams (2002) model solved the problem for almost all sizes when the popula-
tion coefficient  α  was high (2.5 and 2.0), although the processing times increased as the 
number of candidate sites (n) was increased. For instance, when n=200 and  α =2.5, the 
model completed all feasible runs (in some cases the model was infeasible due to high 
population requirement and/or inadequate population distribution in the candidate sites) 
with an average processing time of 0.2 second. For n=2000, the average processing time 
increased to 4.2 seconds. A similar pattern is observed when the population coefficient was 
decreased to  α =2.0. For n=200, an average of 4.0 seconds was used, while for n= 2000, only 
14 runs were completed within the 2 hour total time limit. For other population settings, 
the model encountered computational difficulty more often and could not find a solution 
after running 1 hour in at least one run (indicated in Table 3 with “>”). The computational 
difficulty has become more severe as the problem size increased. For the setting  α =1.5 and 
n=200, for example, the model completed 14 runs (average processing time =552.3 sec-
onds). For  α =1.5 and n=500, the model completed only 4 runs (average processing time = 
2124.9 seconds). The model completed only 2 runs when n=1000, 1500 and 2000. The 
worst performance was observed when  α =1.0 and 0.5, where the model ran out of the 1 
hour time limit almost in each run even with the smallest test problem (n=200).

The Önal et al. (2016) model displayed a relatively steady computational per-
formance as in the 100-site problem. In general, the model used less time when a 
smaller number of sites was selected (Table 3, n=200). However, it encountered more 
difficulties than the Williams (2002) model in solving large problems even when the 
population settings were high. For instance, when n=500, the model completed only 
two runs for each population setting; and when n=1000, 1500 and 2000, it stopped 
without finding any solution within the 1 hour time limit. A more serious problem was 
encountered in some cases where the computer ran out of memory due to the large size 
of the model (millions of variables and equations, see Table 3).
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Contiguity and compactness

In this section, we compare the computational efficiency of the Williams (2002) and 
Önal et al. (2016) models in solving contiguity and compactness problems. We called the 
model based on Williams (2002) but with (8) as the objective function and (9) as an ad-
ditional constraint “W-CM” (CM for contiguity and compactness) and the model based 
on Önal et al. (2016) but with (7) as the objective function “Ö-CM”. The number of 
sites in the test runs was set as n=100, 200 and 500 and we defined the population coef-
ficient  α as in the contiguity tests. When n=500, both models encountered severe compu-
tational difficulty for most population coefficient settings. Table 4 summarises the results.

Table 3. Computational efficiency of Williams (2002) and Önal et al. (2016) models in solving large-
scale contiguity problems.

Models  α a
n=200 (10*20) n=500 (20*25) n=1000 (25*40) n=1500 (30*50) n=2000 (40*50)

Model
size b Time (s) Model

size b Time (s) Model
size b Time (s) Model

size b Time (s) Model
size b Time (s)

Williams 
(2002)

2.5

2,361 
1,682

0.2 c

6,141 
4,322

0.5 c

12,481 
8,742

1.1 c

18,831 
13,142

2.4 c

25,244 
17,594

4.2 c

2.0 4.0 26.5 108.3 383.5 d e

1.5 >552.3 d >2124.9 d >3600.0 d >3600.0 d e

1.0 >3600.0 d >3600.0 d >3600.0 d >3600.0 d e

0.5 >1822.0 d >3600.0 d e e e

Önal
et al. 
(2016)

2.5

40,001 
39,263

>3278.5 d

250,001 
248,093

>3600.0 d

1,000,001 
996,133

e

2,250,001 
2,244,163

e

4,000,001 
3,992,183

e

2.0 2851.4 d >3600.0 d >3600.0 d e e

1.5 2608.3 d >3600.0 d >3600.0 d e e

1.0 >2613.6 d >3600.0 d >3600.0 d f g

0.5 1238.5 d >3600.0 d >3600.0 d f g

a: Population coefficient. The size of population to be covered in the reserve equals to  α  times the number 
of candidate sites (n).
b: The first number is the number of variables, the second number is the number of equations in the model.
c: 17 to 29 runs are infeasible due to high coverage requirement and/or inadequate species occurrence. 
Values are average of times used in feasible runs.
d: 2 to 19 runs were completed in 2 hours. The “>” indicates at least one run was out of time limit (1 hour).
e: 2 or more runs were completed, at least one of which terminated with no solution after running 1 hour 
or with integer solution but gap not available.
f: Only 1 run was completed which took more than 7 hours and found integer solution with gap over 
80 percent or no solution returned.
g: Out of memory after running about 2000 seconds or integer solution found after running nearly 
3 hours but with gap greater than 70 percent.
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The W-CM model encountered difficulty for some population settings ( α ) when 
solving the 100-site problem. For  α =2.5, the solution time was only 1.4 second, but 
for the settings  α =2.0 and 1.5, it jumped to 178.2 and 1692.3 seconds. For  α =1.0, 
only 3 runs were completed within the 2 hour total time limit. However, for  α =0.5, 
the solution time was decreased dramatically to 90.6 seconds, showing the fast-slow-
fast pattern observed when solving the contiguity problems. For n=200 and 500, the 
model completed only 2 runs within the 2 hour total time limit for most population 
settings. In general, larger models require more solution times. However, raising the 
population requirement level improved the computational efficiency. For example, 
for  α =2.5, the average solution times were only 4.8 and 78.3 seconds for n=200 and 
n=500, respectively.

The Ö-CM model used only about 2 seconds in the 100-site problem for all popu-
lation coefficient settings. When n=200, the model used about 20 minutes or less for 
all population settings, again better than the W-CM model. When n was increased 
to 500, this model encountered difficulty too, where only 2 runs could be completed 
within the 2 hour total time limit.

It is interesting that the Ö-CM model is computationally more efficient than the 
W-CM model although it has a larger size both in terms of the number of variables and 

Table 4. Comparison of W-CM model and Ö-CM model in solving contiguity and compactness prob-
lems with various sizes.

Models α a
n=100 (10*10) n=200 (10*20) n=500 (20*25)

Model size a Time (s) Model size a Time (s) Model size a Time (s)

W-CM

2.5

6,091; 5,772

1.4b

22,261; 
21,582

4.8 b

130,891; 
129,072

78.3b

2.0 178.2c >2401.6 d >3600.0 c

1.5 1692.3c >3600.0 d >3600.0 c

1.0 >3318.8c >3600.0 d >3600.0 c

0.5 90.6 >3600.0 d >3600.0 c

Ö-CM

2.5 10,001; 
19,443 2.4 b 40,001; 

39,263 1474.4 b 250,001; 
248,093 >3600.0 c

2.0 2.0 1360.7 c >3600.0 c

1.5 1.9 1135.4 c >3600.0 c

1.0 1.9 1073.4 c >3600.0 c

0.5 1.7 767.6 c >3600.0 c

a: See Table 3 for the explanations of α , model size and symbol “>”.
b: Some runs were infeasible due to high population requirement and/or inadequate species occurrence. 
Values are averages of times used in feasible runs.
c: 2 to 41 runs were completed in 2 hours. Values are averages of times used in completed runs.
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the number of equations (see Table 4). This indicates that model size may not be the 
only factor determining the computational efficiency of MIP models.

Finally, we note that the Ö-CM model (which includes an additional distance 
component

∑
k
 ∑

i
 dkiXki 

in the objective function, see (7)) is computationally more efficient than the Önal 
et al. (2016) model used in this test, although the size of these two models are exactly 
the same. For instance, for  α =1.5 and n=200, the Önal et al. (2016) model used an av-
erage of 2608.3 seconds of processing time (see Table 3), while the Ö-CM model used 
only 1135.4 seconds (see Table 4). This, again, indicates that the model size is not the 
only factor that may affect computational efficiency of MIP models. We discuss these 
factors in the next section.

Discussion

Based on the computational experiments we conducted, we identified four important 
factors that affect the computational efficiency of MIP models in nature reserve design 
problems with contiguity and compactness considerations: 1) Model size, 2) The share 
of selected sites, 3) Model structure and 4) Input data. We discuss these factors below.

Model size is the most important factor affecting the computational efficiency of 
these models. As the model size (especially the number of binary variables) increases, 
solution time may increase substantially. Figure 1 depicts an example using the Wil-
liams (2002) model. As the number of candidate sites n increased from 100 to 1500, 
which gradually increased the number of variables from 6,091 to 18,831 and the num-
ber of constraints from 5,772 to 13,142, the solution time increased exponentially 
from 3 seconds to nearly 400 seconds. This is largely due to the number of nodes 
solved during the branch and bound procedure used by most MIP solvers. In general 
more nodes have to be solved when the model has a larger size.

Our test runs showed that the solution times also depend significantly on the share 
of selected sites in the optimal solution, which in turn depends on the specification 
of the population coefficient ( α ). This can be seen clearly, for instance, in the results 
obtained with the Shirabe (2005), Conrad et al. (2012) and Jafari and Hearne (2013) 
models for n=100 (see Table 2) and in the Williams (2002) model results for n=200 (see 
Table 3). Generally, these models follow a fast-slow-fast pattern, that is, as the share of 
selected sites increases, the solution time increases first, reaches a peak (where the share 
of selected sites is about 20–30 percent of all the candidate sites) and then decreases. 
This may be explained by the number of binary variables that have to be fixed at the 
values of 0 or 1 during the solution process. When the share of selected sites is small (or 
large), a large portion of binary variables will be fixed at 0 (or 1), leaving fewer combi-
nations (a smaller branch and bound tree) that need to be searched for improving the 
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Figure 1. Relationship between processing time and the number of candidate sites (Williams (2002) 
model was used. population coefficient α =2.0. See text for detailed explanation of α ).

objective function value (A brief description of the branch and bound algorithm can 
be found in Önal 2003). Similar results have been reported earlier by Williams (2002).

The Önal et al. (2016) model seems to be an exception. As noted above, it showed a 
relatively steady pattern in solution times for all population coefficient settings. The so-
lution time tends to decrease only when a very small number of sites are to be selected.

Model structure is the third important factor that affects computational perfor-
mance of the models we tested. Although the number of variables and constraints in 
a model may be substantial, due to the algebraic model structure, a large number of 
those variables and constraints may actually be redundant. Those redundant elements 
are eliminated during the preliminary solution procedure (Presolve in some GAMS 
solvers such as CPLEX and GUROBI) and the model sizes are much smaller after the 
Presolve. This is one of the main reasons for the superior computational advantage of 
the Önal et al. (2016) model. This situation was also observed in empirical applications 
of the Önal et al. (2016) model.

In addition, some algebraic forms may be integer friendly and some may not. For 
example, the graph-theoretic contiguity model introduced by Önal and Briers (2006) 
has the following constraint:

   ∑
i∈ N  j  

   X  ij    ≤ 4  U  j    for all j (10)

where Xij and Uj are binary variables as defined before and Nj is the set of j’s neigh-
bour sites. This constraint states that if site j is selected, then at most four arcs can 



How large spatially-explicit optimal reserve design models can we solve now? 29

direct to it from its neighbour sites. The computational efficiency of the model can be 
improved substantially by modifying this constraint as in constraints (3) and (4). A 
comparison of the original Önal and Briers (2006) model and the modified model is 
depicted in Figure 2.

It is clear that replacing constraint (10) with constraints (3) and (4) slashes the 
solution time. We performed a paired samples t-test for each value of  α  to test the 
significance of the difference between these two models’ processing times. The result 
reported a p value less than 0.05 for each  α  value, indicating that the difference between 
the processing times is statistically significant. This result should be attributed to the 
fact that a constraint like (10) is integer unfriendly while the constraints (3) and (4) 
improve the model’s computational efficiency by helping construct a unimodular con-
straint matrix (ReVelle 1993, Williams 2002). Indeed, having a unimodular constraint 
matrix is one of the main reasons for the Williams (2002) model’s good efficiency.

Input data such as land price and species distribution across candidate sites are also 
crucial factors that can affect the model’s computational efficiency. Figure 3 depicts 
the processing times used by the models of Önal et al. (2016) and Williams (2002) 
when solving a 100-site problem with population coefficient  α =0.5. The problem size 
remained unchanged across the 50 runs while species population and site costs in each 
run were varied.

The shortest time used by the Önal et al. (2016) model is only about 1.2 seconds, 
while the longest time is 131.2 seconds. For the Williams (2002) model, the short-
est and longest times are 0.3 seconds and 84.5 seconds, respectively. These results 

Figure 2. Significance of model structure in affecting the model’s computational efficiency (number of 
sites n=36. The size of population to be covered equals to α times n.).
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indicate that alterations in the input data may increase or decrease the solution time 
substantially even if the model size remains the same. This can also be explained by 
the workings of the branch and bound procedure. One data set may yield a ‘good’ 
integer solution in an early iteration and eliminate a large portion of the branch and 
bound tree; therefore, a fewer number of nodes needs to be solved (or just the opposite 
may occur). This seems to have happened in runs 4, 17, 33 and 44 with the Önal et 
al. (2016) model and in runs 1, 4, 7, 29, 39 and 44 with the Williams (2002) model.

We should note that none of these factors alone can determine the performance 
of a MIP model, instead they affect the model’s performance together. Solution tech-
niques have been designed to speed up the computational process, such as supplying 
a cut value (Önal 2003, Cerdeira et al. 2005, Carvajal et al. 2013) or using a hybrid 
two-phase solution method (Conrad et al. 2012). We did not explore the effects of 
these techniques on the reserve design models tested here.

Conclusions

We have compared the computational efficiencies of eight representative optimal re-
serve design models that explicitly incorporate contiguity and compactness considera-
tions. We identified the models presented by Williams (2002) and Önal et al. (2016) 
as the most efficient models. They both solved a 100-site contiguity problem easily, but 
encountered difficulty in solving the 200-site and larger contiguity problems. When 
compactness is also included, the Williams (2002) model had difficulty in solving a 
100-site problem, while the Önal et al. (2016) model could solve a 200-site problem 
in a reasonable processing time (about 20 minutes). The Williams (2002) model could 
solve contiguity problems and some contiguity and compactness problems with up to 
2000 sites when a large fraction of the candidate sites (such as 75 percent or more) 

Figure 3. Computational efficiency of the Önal et al. (2016) and Williams (2002) models in solving a 
100-site problem with various species distributions and site costs data.
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needs to be selected. The Önal et al. (2016) model displayed a steady performance and 
outperformed the Williams (2002) model when both contiguity and compactness are 
considered, but still the model could not be solved within 1 hour when 500 sites are 
involved. We identified model size, share of selected sites, model structure and input 
data as the four important factors affecting the computational efficiency of spatially-
explicit optimal reserve design models. When developing such a model, one should try 
to define as few variables and equations as possible and to construct the model in such 
a way that its constraint matrix is unimodular (ReVelle 1993). These findings may be 
useful to conservation planners who select and use models in reserve design or manage-
ment practices. This work may also provide guidance to academic researchers who try 
to develop computationally efficient optimal reserve design models.

The current nature reserves, whether terrestrial or marine, may not be adequate in 
providing sufficient protection to biodiversity. For instance, only over 1.89% of the 
marine protected areas (MPAs) worldwide is covered by exclusively no-take MPAs, far 
from the Convention on Biological Diversity’s (CBD) Aichi Target 11 of 10% MPA 
coverage by 2020 and even further from the 30% target recommended by the IUCN 
World Parks Congress 2014 (IUCN 2018). It is almost certain that the current sys-
tems of nature reserves should be expanded. Acquiring more protected areas, however, 
would have to be done in a world where the human economy struggles to grow and 
the ecosystems and nonhuman species demands protection. Indeed, there is a conflict 
between economic growth and wildlife conservation (Czech 2014). Various disciplines 
such as ecological economics and environmental philosophy discussed this conflict 
and offered principles and guidelines to mediate the conflict and achieve sustainability. 
The science of nature reserve design or, more specifically, the optimal reserve design 
models, can contribute too. These models aim to solve practical conservation problems 
by incorporating ecological and socioeconomic considerations and help best prioritise 
conservation effort by guaranteeing optimal solutions. With the remarkable improve-
ments in optimisation methods and computational power, it is reasonable to anticipate 
that spatial optimisation models will likely play a more significant role in the future 
than it does today in analysing and acquiring new protected areas.
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