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Abstract
The threat of invasive alien plant species is progressively becoming a serious global concern. Alien plant 
invasions adversely affect both ecological services and socio-economic systems. Hence, accurate detection 
and mapping of invasive alien species is valuable in mitigating adverse ecological and socio-economic 
effects. Recent advances in active and passive remote sensing technology have created new and cost-
effective opportunities for the application of remote sensing to invasive species mapping. In this study, 
new generation Sentinel-2 (S2) optical imagery was compared to S2 derived Vegetation Indices (VIs) and 
S2 VIs fused with Sentinel-1 (S1) Synthetic Aperture Radar (SAR) imagery for detecting and mapping the 
American Bramble (Rubus cuneifolius). Fusion of S2 VIs and S1 SAR imagery was conducted at pixel level 
and multi-class Support Vector Machine (SVM) image classification was used to determine the dominant 
land use land cover classes. Results indicated that S2 derived VIs were the most accurate (80%) in detect-
ing and mapping Bramble, while fused S2 VIs and S1 SAR were the least accurate (54%). Findings from 
this study suggest that the application of S2 VIs is more suitable for Bramble detection and mapping than 
the fused S2 VIs and S1 SAR. The superior performance of S2 VIs highlights the value of the new genera-
tion S2 VIs for invasive alien species detection and mapping. Furthermore, this study recommends the 
use of freely available new generation satellite imagery for cost effective and timeous mapping of Bramble 
from surrounding native vegetation and other land use land cover types.
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Introduction

Global biodiversity is increasingly becoming susceptible to pressure from invasive spe-
cies (Butchart et al. 2010). Specifically, the rapid spread of invasive alien plants in 
several regions of the world has adversely impacted ecosystem health, native species 
diversity and local and national economies (Pysek et al. 2012; Schirmel et al. 2016; 
Convention on Biological Diversity 2009). Brooks et al (2006) highlight the impera-
tive need for the protection of native biodiversity, a need further emphasised by the 
United Nations (UN) that declared the period between 2010 and 2020 as the decade 
of biodiversity (UNEP 2010). Moreover, increased costs associated with invasive alien 
species eradication and management programmes puts further pressure on biodiversity 
(Marbuah et al. 2014). The severity of the problem has increased the impetus on de-
velopment of efficient and cost-effective approaches for the control and management 
of invasive alien plant species.

In South Africa, approximately two million hectares of land have been invaded by 
invasive alien plant species (van Wilgen et al. 2012). The south western, southern and 
eastern coastal and interior regions have been identified as highly vulnerable to inva-
sion (Kotzé et al. 2010; van Wilgen et al. 2012; Clusella-Trullas and Garcia 2017). In 
KwaZulu-Natal (KZN) province, for instance, Erasmus (1984) notes that the cool and 
moist conditions favour a range of invasive alien plant species. The American Bramble 
(Rubus cuneifolius) has particularly thrived in the province’s western mountain ranges 
(Henderson 2011). Originating from North America, Bramble belongs to the Rosaceae 
family and has adverse direct and indirect impacts on biodiversity that include changes 
in nutrient cycling, increase in soil erosion, reduction in rangeland carrying capacity 
and viability, as well as effects on natural plant succession, fire patterns and behaviour 
and hydrological processes (Henderson 2001).

To develop optimal mitigation of spread and eradication approaches, determina-
tion of spatial cover and extent of Bramble infestation is paramount. Traditionally, 
surveys have been adopted for mapping and monitoring of invasive alien plant species 
(Tan et al. 2012; Shah and Reshi 2014). However, reliance on field-based surveys is 
often restrictive, as they are commonly time consuming, labour and resource intensive 
and unsuitable in inaccessible sites. Hence, the adoption of remotely sensed imagery 
for invasive alien species detection and mapping has recently gained popularity. Huang 
and Asner (2009) attribute this increase to improved sensor technology, facilitating 
detailed and large scale landscape mapping and monitoring. In the recent past, the 
majority of invasive alien plant species detection and mapping applications have relied 
on remotely sensed image spatial and spectral characteristics (Mirik et al. 2013; Mül-
lerová et al. 2013). Other studies have proposed object-based textural and contextual 
characteristics (Zhou et al. 2008) and landscape thermal characteristics (Eisavi et al. 
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2015). However, the advent of new sensors with radar scanning capabilities provides 
new opportunities for invasive plant species detection and mapping (Bradley 2014). 
For instance, radar’s ability to determine surface structure and roughness, dielectric 
constant (moisture content) and slope angle and orientation offer great opportunities 
for invasive species mapping. The European Space Agency’s (ESA) sentinel constella-
tion is a recent satellite that consists of the Sentinel-1 (S1) and Sentinel-2 (S2) earth 
observation instruments. Both sensors disseminate freely available multispectral opti-
cal (S2) and multi-polarised SAR (S1) data. The unique S1 and S2 sensor characteris-
tics, such as large swath widths, medium to fine scale spatial resolutions, short re-visit 
times and additional bands (Frampton et al. 2013; Sentinel-1 User Handbook 2012) 
provide numerous opportunities to evaluate the potential of the sensors to improve the 
reliability of remote sensing approaches for invasive alien plant species mapping.

Conventional remote sensing of invasive alien species utilises spectral wavelengths 
of absorbed and reflected light by distinguishing certain pigments in leaves and inflo-
rescence (Huang and Asner 2009; Mirik et al. 2013; Weisberg et al. 2017; Müllerová 
et al. 2013; Bradley 2014). Hence, the potential of S2 to detect and map invasive alien 
species exists (Rajah et al. 2018). Specifically, the senor’s improved spectral resolution 
can be used to derive numerous band ratios and indices, useful for vegetation mapping. 
For example, spectral vegetation indices (VIs), derived from remotely sensed data, have 
become valuable in mapping and monitoring vegetation species (Jamali et al. 2014; 
Zhang et al. 2015; Orhan et al. 2014). VIs have several advantages over stand-alone 
spectral bands that include reduced effect of atmospheric conditions, canopy geometry 
and shading, decreased effect of soil background on canopy reflectance and enhanced 
variability of spectral reflectance of target vegetation (Liu et al. 2004; Viña et al. 2011). 
On the other hand, the unique characteristics of S1 SAR imagery could provide addi-
tional variables that could improve invasive alien species detection and mapping. SAR 
data can operate at wavelengths irrespective of cloud conditions or lack of illumination 
and is capable of acquiring data during day and night (Sentinel-1 User Handbook 
2012). SAR offers detailed information on the often difficult to detect characteristics 
of vegetation such as shape, moisture and roughness (Chen et al. 2010). However, de-
spite this potential, previous adoption of SAR imagery for invasive alien plant species 
mapping has been limited by high acquisition cost, limited area coverage and complex 
data pre-processing (McNairn et al. 2009). Hence, the provision of freely available 
SAR imagery from the S1 satellite provides new prospects for advancing the mapping 
and detection of invasive alien plant species.

Asner et al. (2008) and Zhang (2010) note that the fusion of imagery from vari-
ous sensors, while applying appropriate methodologies, may be valuable for invasive 
alien species detection and mapping. Furthermore, conventional optical imagery and 
SAR are commonly believed to be complimentary (Zhu et al. 2012). Considering 
the above-mentioned advantages, as well as S2s improved spatial, spectral and tempo-
ral characteristics valuable for generating VIs, the fusion of these datasets provides a 
unique opportunity to investigate the value of new generation sensors such as S1 and 
S2 in mapping alien species. Accordingly, this study sought to determine the perfor-
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mance of conventional stand-alone S2 optical imagery, stand-alone S2 derived VIs and 
fused S2 VIs with S1 Synthetic Aperture Radar (SAR) imagery in detecting and map-
ping the American Bramble.

Methodology

Study site

This study was conducted at the uKhahlamba Drakensberg Park (UDP), a UNESCO 
proclaimed world heritage and nature conservation area. The area is situated along the 
western edge of the KwaZulu-Natal province of South Africa (Figure 1). The area expe-
riences wet and humid conditions during summer (November to March) (Nel 2009), 
with rainfall ranging from 990–1130 mm (Dollar and Goudy 1999). Winters (May 
to August) are dry and cold, with common occurrence of snow and frost (Mansour et 
al. 2012). Mean annual temperatures average 16° C and annual rainfall averages 1000 
mm and 1800 mm at lower and higher elevations, respectively (Tyson et al. 1976). 
The landscape is predominantly natural grassland with wiregrass – Aristida purpurea, 
weeping lovegrass – Eragrostis curvula and the common thatch grass – Hyparrhenia 
hirta as dominant species. According to Everson and Everson (2016), the UDP is one 
of the most valuable remnant grassland in the country. The area is also characterised 
by patches of natural shrubs (Erica spp.) and isolated dense groups of bushes and trees. 
In the recent past, Bramble has emerged within the UDP and has invaded significant 
portions of the landscape (Bromilow 2010).

Field data collection

Field data collection was conducted during spring and summer of 2016. A purposive 
sampling technique was utilised to record ground truth points of four major land 
cover classes (Bare rock, Bramble, Forest and Grassland). These seasons were chosen 
for field data collection as Bramble patches are most phenologically discernible from 
native vegetation. Ground control points were recorded as close to the centroid of 
Bramble patches as possible. Collected Bramble patches ranged from 15 m × 15 m to 
50 m × 50 m. Ground truth point data collected from Bramble patches were spatially 
independent from each other to compensate for the spatial resolution of the satellite 
imagery utilised. This ensured that each Bramble patch fell within a single image pixel 
and could be associated with the unique spectral reflectance of a specific pixel. Due to 
the area’s steep and mountainous terrain, hence restricted accessibility, only Bramble 
patches that could be accessed by foot were considered for this study. In addition, aerial 
photographs at a 0.5 m spatial resolution captured in 2016 were used to supplement 
and verify selected land cover ground truth points. In total, 15, 40, 45 and 60 ground 
truth points were used for Bare rock, Forest, Grassland and Bramble, respectively.
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Figure 1. The uKhahlamba Drakensberg Park (UDP) (C) located within the KwaZulu-Natal Province 
(B) of South Africa (A) (Points within the map represent GPS cordinates of ground truth points).

Image acquisition

Optical Imagery

The Sen2Cor plugin ESA SNAP toolbox 3.0 (European Space Agency 2018) was used 
to convert summer Sentinel-2 level-1C raw products to surface reflectance values in 
the Sen2Cor plugin. Images were corrected for topographic effects to remove shad-
ows associated with mountainous areas using the System for Automated Geoscientific 
Analyses SAGA (2.1.2) terrain analysis lighting tool within the Quantum GIS (QGIS) 
environment on a band by band basis (Conrad et al. 2015). The correction of topo-
graphic effects is a tool within the SAGA software that best adjusts optical imagery for 
topographic effects of shadow (Conrad et al. 2015).

Sentinel-1 Synthetic Aperture Radar (SAR) Imagery

Summer Synthetic Aperture Radar (SAR) data were downloaded from the Sentinel-1 
data hub. Sentinel-1 level-1 Ground Range Detected (GRD) products were multi-
looked and projected to ground range using an earth ellipsoid model. SAR Vertical-
Horizontal (VH) polarised imagery was acquired using the Interferometric Wide 
Swath (IW) mode, with a spatial resolution of 20 metres and a 250 km2 swath width. 
Pre-processing of SAR imagery was conducted using the ESA SNAP toolbox following 
the methodology outlined in Bevington (2016). The Bevington (2016) SAR image 
processing chain consists of 5 steps: (1) Application of orbit file to SAR image; (2) 
Radiometric calibration; (3) Terrain correction; (4) Application of speckle filter; (5) 
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Convert SAR DN to Gamma backscatter values. Polarisation of SAR imagery recorded 
in Vertical Horizontal (VH) acquisition mode was fused with S2 derived VIs. SAR 
backscatter measurements are believed to be a function of polarisation and target ob-
ject characteristics, such as geometry, roughness and dielectric properties (Vyjayanthia 
and Nizalapur 2010).

Sentinel-2 derived Vegetation Indices (VIs)

Sixty-five Vegetation Indices (VIs), selected from the online Index Database (IDB) 
(www.indexdatabase.de), were calculated from summer Sentinel-2 surface reflec-
tance optical imagery. The IDB is a tool developed to provide a simple overview of 
satellite specific vegetation indices that are usable from a specific sensor for a specific 
application (Henrich et al. 2009). All VIs were calculated within a python 2.7.13 
environment using listed formulae from the IDB and spectral reflectance Sentinel-2 
bands (Table 1). The 10 most influential VIs were selected for stand-alone classifica-
tion results and subsequent image fusion with SAR imagery in order to produce a 
fused VIs and SAR classification result. The top 10 VI selections were determined us-
ing the Variable Importance in the Projection (VIP) method. Variable Importance in 
the Projection aims to improve classification accuracy by recognising a subset of all 
initial variables (VIs) that, if combined, could increase classification accuracies with 
parsimonious representation (Farrés et al. 2015; Xu et al. 2018). As aforementioned, 
the study area is pre-dominantly natural grassland, regarded as a valuable economic 
and environmental resource. Hence, in addition to Bramble, it was necessary to 
reliably determine the spatial extent of grassland. In this regard, the VIP was used 
to determine the importance of each VI in increasing the two land use land cover’s 
user’s and producer’s accuracies.

Table 1. Selected S2 derived VIP vegetation indices subsequently utilized for SAR fusion

VIP Vegetation Indices (VIs) VI formula (S2 optical bands)
Datt2 (Simple Ratio 850/710) Near Infrared (NIR)/Red Edge 1 Datt 1999
PSSRc2 (Simple Ratio 800/470 Pigment 
specific simple ratio C2)

Near Infrared (NIR)/Blue Blackburn 1998

RDVI (Renormalized Difference Vegeta-
tion Index)

Near Infrared - Red/(Near Infrared + Red)0.5 Roujean and Breon 
1995

SR520/670 (Simple Ratio 520/670) Blue/Red Henrich et al. 2009
SR672/550 (Simple Ratio 672/550) Red/Green Henrich et al. 2009
SR800/550 (Simple Ratio 800/550) Near Infrared/Green Henrich et al. 2009
SR833/1649 (Simple Ratio 833/1649 
MSIhyper)

Near Infrared /Shortwave Infrared1 Henrich et al. 2009

SR860/550 (Simple Ratio 860/550) Narrow-Near Infrared/Green Henrich et al. 2009
SRMIR/Red (Simple Ratio MIR/Red 
Eisenhydroxid-Index)

Shortwave Infrared2/Red Edge 1 Henrich et al. 2009

TM5/TM7 (Simple Ratio 1650/2218) Shortwave Infrared1/ Shortwave Infrared2 Henrich et al. 2009
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Image fusion

Pixel level image fusion, based on ground truth points, was used to merge the ten most 
influential VIP VIs and Sentinel-1 SAR imagery (a description of image fusion levels can 
be found in Hong et al. (2014). All VIs were derived from S2 optical bands, at a spatial 
resolution of 20 m. Extraction of feature pixels (ground truth points) were done sepa-
rately for optical imagery (spectral reflectance measurements) and SAR imagery (back-
scatter measurements). Corresponding backscatter measurements were then assigned to 
the corresponding extracted spectral reflectance of ground truth points. Optical and 
SAR imagery were then fused using the composite band tool in ArcMap 10.4. This was 
achieved by stacking optical and SAR imagery on a band by band basis, creating a com-
posite (fused) image containing both spectral reflectance and backscatter measurements 
at respective ground truth points. The fused image was then used for image analysis.

Image classification

Image classification was conducted post pixel level image fusion as outlined in Pandit 
and Bhiwani (2015). The Support Vector Machine (SVM) algorithm was run using 
the scikit-learn package in a Python environment. The SVM algorithm is a supervised 
statistical learning technique initially developed to handle binary classification (Vapnik 
1979). SVM aims to identify a hyper-plane that is able to distinguish the input dataset 
into a predefined discrete number of classes consistent with training data (Mountrakis 
and Ogole 2011). Several evaluations of SVM have shown that the algorithm is ca-
pable of delineating several classes with a small number of support vectors as training 
data, without ultimately compromising classification accuracies (Foody and Mathur 
2004; Mantero et al. 2005; Bruzzone et al. 2006; Shao and Lunetta 2012; Zheng et al. 
2015). Spectra were extracted using ground truth points of the aforementioned major 
land cover classes. The fused VIP vegetation indices and SAR image measurements 
were used to define the SVM feature space and a radial basis kernel function used to 
determine optimal hyperplanes that differentiate the different land cover classes. Waske 
et al. (2010), for instance, established that the approach is superior to the polynomial 
function. Furthermore, this approach is known to be fast and computationally effi-
cient, with a two parameter tuning requirement; cost ‘sigma (C)’ for error adjustment 
of misclassified instants of training data and kernel width ‘gamma (ƴ) (Waske et al. 
2010). As recommended by Hsu and Lin (2002), the one-against-one approach was 
used to implement a multiclass-based SVM model.

Spatial cover map production and validation

Support Vector Machine classification maps were generated for S2 optical imagery, 
Vegetation Indices and for the fused VIS and SAR imagery within a Python environ-
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ment. Training data (70%) of all four considered land cover classes were used as the 
input for Bramble spatial cover maps. The respective test dataset (30%) was then used 
to assess classification accuracies across all imagery. A confusion matrix was generated 
from the SVM process and user and producer accuracies used to quantify the reliability 
of the resultant Bramble spatial cover maps. In a confusion matrix, the overall accu-
racy is determined by dividing correctly classified pixels by the total number of pixels 
checked (Congalton and Green 1999). Two other measures, producer’s and user’s ac-
curacy, can also be generated from the matrix. Producer’s accuracy is determined by 
dividing the total number of correct pixels in one class divided by the total number of 
pixels as derived from reference data (Congalton and Green 1999). It is a measure of 
how well an area has been classified and is expressed as:

Producer’s accuracy (%) = 100% – error of omission (%) 	 (1)

User’s accuracy on the other hand is a measure of map reliability and provides in-
formation on how well a map represents ground features. It is expressed as:

User’s accuracy (%) = 100% – error of commission (%)	 (2)

Results

Sentinel-2 optical bands

The overall classification accuracy using S2 optical bands was 78% (Table 2). Bramble 
produced the lowest users’ accuracy (46%) across all considered classes, while Grass-
land produced the lowest producers’ accuracy (69%) (Table 3). Results produced using 
only S2 optical bands were used as a benchmark for classification using VIs and VIs 
fused with SAR imagery.

A large overestimation of Bramble discrimination and spatial cover using S2 opti-
cal bands was evident (Figures 2b and 3a). An underestimation in Grassland discrimi-
nation and spatial cover was observed, as the SVM algorithm could not effectively 
distinguish between Bramble and Grassland (Table 3, Figure 2b). An underestimation 
in the spatial cover of the Bare rock class was also evident, as there was consistent mis-
classification of Bare rock from Grassland and Bramble (Figures 2b and 3a).

Vegetation Indices (VIs)

Discrimination and mapping of Bramble using vegetation indices produced the high-
est overall accuracy (82%) when compared to the benchmark of using only S2 optical 
image bands (Table 3). A users’ accuracy of 72% for Bramble surpassed those achieved 
by S2 optical imagery as well as fused vegetation indices and SAR imagery (Table 1).
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Figure 2. Support Vector Machine (SVM) classification maps produced utilising (a) Vegetation Indices; 
(b) S2 optical bands and (c) Fused VIs and SAR.

Table 2. Support Vector Machine (SVM) confusion matrix using Vegetation Indices for Bramble map-
ping and discrimination. Where BR = Bare rock; BBL = Bramble; FR = Forest; and GR = Grassland, UA 
= Users accuracy; PA = Producers accuracy and OA = Overall accuracy.

S2 (Optical bands) BR BBL FR GR UA (%)
BR 33 2 0 11 70
BBL 0 24 0 30 46
FR 1 1 51 3 92
GR 2 3 7 94 89
PA (%) 92 81 87 69
OA (%) 78

Table 3. Support Vector Machine (SVM) confusion matrix using Sentinel-2 optical bands for Bramble 
mapping and discrimination. Where BR = Bae rock; BBL = Bramble; FR = Forest; and GR = Grassland, 
UA = Users accuracy; PA = Producers accuracy and OA = Overall accuracy.

Vegetation Indices (VIs) BR BBL FR GR UA (%)
BR 51 11 0 0 83
BBL 0 53 19 4 72
FR 1 0 54 0 97
GR 13 7 0 57 74
PA (%) 83 78 76 91
OA (%) 84

The classification map resulting from fused vegetation indices and SAR imagery 
showed the most accurate discrimination and spatial cover of all considered land cover 
classes. The Grassland and Bare rock classes were reliably discriminated (Figures 2a 
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and 3b). In addition, the spatial discrimination and cover of Bramble was reliably dis-
criminated as compared to the S2 optical band benchmark and the fused VIs and SAR 
imagery (Figures 2a and 3b).

Vegetation Indices (VIs) and S1 SAR imagery

The ten most influential S2 VIs were selected for pixel level image fusion with S1 
SAR imagery. Using VIP, the influence of VIs was identified by the importance on 
increasing Grassland and Bramble’s User’s and Producer’s accuracy, hence, the ten 
bands that generated the ten highest classification accuracies were selected. Five of 
the selected VIs incorporated the Near Infrared (NIR) optical band, while three se-
lected VIs were derived using Shortwave Infrared 1 (SWIR1) and Shortwave Infrared 
2 (SWIR2) optical bands (Table 1). The SR520/670 and SR672/550 VIs were the 
only two VIP VIs derived using bands within the visible portion of the electromag-
netic spectrum (Table 3).

The fusion of VIs and S1 SAR imagery produced the lowest overall accuracy (55%) 
when compared to the benchmark of S2 optical band results (Table 4). Bramble users’ 
and producers’ accuracies were 29% and 20%, respectively (Table 4), the lowest in all 

Figure 3. Overestimation and underestimation of land-cover classes within an area of interest where (a) 
= S2 optical bands; (b) = Vegetation indices (VIs) and (c) = VIs and SAR imagery.
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classes. The Forest (73% and 100%) and Bare rock (79% and 97%) classes were the 
highest users’ and producers’ accuracies, respectively.

The SVM classification map, produced using fused vegetation indices and SAR, 
resulted in an underestimation of the Bramble class, while an overestimation of the 
Grassland class was observed (Figure 2c). Although the Forest class received high users’ 
and producers’ accuracies, the overall distribution and discrimination were overesti-
mated when compared to the benchmark (Figures 2c and 3c).

Discussion

This study sought to determine the potential of derived Vegetation Indices (VIs) and 
fused VIs and Synthetic Aperture Radar (SAR) imagery to improve invasive alien spe-
cies detection and mapping. The overall classification accuracy of optical imagery was 
used as the benchmark for comparison of the results achieved using S2 VIs and fused 
VIs and SAR. Opposing the expected outcome, fused VIs and SAR imagery produced 
the lowest classification accuracy (55%) compared to conventional S2 optical imagery 
(78%). Moreover, S2 derived VIs produced the highest classification accuracy (84%) 
when compared to conventional S2 optical imagery and fused VIs and SAR.

Poor performance of fused VIs and SAR imagery was unanticipated and opposes 
research done by Sano et al. (2005), who noted that the combination of VIs and SAR 
for discrimination within a savannah environment was complementary and improved 
overall discriminant analysis. Sano et al. (2005) also noted that VIs and SAR were able 
to easily separate Grassland from woodlands. However, Sano et al. (2005) also reported 
increased confusion between Grassland and shrub species when utilising fused VIs 
and SAR. This provides some indication that previous studies have also encountered 
unanticipated results when combining VIs and SAR for discrimination purposes. Poor 
overall classification accuracies of fused VIs and SAR imagery can further be attributed 
to vegetation structure and roughness, as this plays a major role in measured SAR back-
scatter values. Similar difficulties were documented by Millard and Richardson (2018) 
who note that, even though it is well established that vegetation roughness influences 

Table 4. Support Vector Machine (SVM) confusion matrix using fused Vegetation Indices and SAR im-
agery for Bramble mapping and discrimination. Where BR = Bae rock; BBL = Bramble; FR = Forest; and 
GR = Grassland, UA = Users accuracy; PA = Producers accuracy and OA = Overall accuracy.

VIs and SAR BR BBL FR GR UA (%)
BR 43 2 0 11 79
BBL 0 15 0 38 29
FR 1 0 45 17 73
GR 0 53 0 39 42
PA (%) 97 20 100 37
OA (%) 55
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SAR backscatter, characterising these variables spatially and temporally within natural 
environments remains a challenge. Although results from fused VIs and SAR were 
unexpected, similar poor performance using the same combination of variables is not 
unprecedented. For example, Torma et al. (2004) also experienced poor performance 
when fusing VIs and SAR.

Patel et al. (2006) and Srivastava et al. (2009) note that the magnitude of SAR 
backscatter is dependent on SAR band frequency, for instance, SAR backscatter signa-
tures at high frequency (e.g. X-band SAR) are known to be sensitive to subtle variations 
in vegetation phenology attributed to deep canopy penetration. Sentinel-1 C-band 
SAR is considered low frequency (decreased canopy penetration) SAR imagery and 
could have experienced difficulty in discerning between Bramble characteristics and 
surrounding native vegetation when using fused VIs and S1 SAR imagery (Khosravi et 
al. 2017; Duguay et al. 2015; Naidoo et al. 2015; Hajj et al. 2014; van Beijma et al. 
2014; Turkar et al. 2012). The influence of sensor incident angle on SAR backscatter 
is known to be interpreted using the same mechanism, particularly for lower frequen-
cies of SAR. Inoue et al. (2002) notes that correlations to plant physiological char-
acteristics, such as Leaf Area Index (LAI), canopy height and stem density, decrease 
with an increasing incident angle. This is mainly attributed to the penetration of SAR 
microwaves responsible for backscatter measurements, as smaller incident angles are 
able to penetrate deeper into canopy cover, hence extract more physiological informa-
tion (McNairn et al. 2009). The relatively large incident angle of S1 (46°) (Sentinel-1 
User Handbook 2012) could have hindered its ability to distinguish vegetation physi-
ological information, which could serve to justify decreased classification accuracies 
achieved using fused VIs and SAR imagery (de Almeida Furtado et al. 2016; Naidoo 
et al. 2015; Frampton et al. 2013; Vyjayanthia and Nizalapur 2010). The influence of 
soil moisture and roughness on leaf and stalk SAR backscatter measurements is con-
sidered a weakness of SAR imagery across specific classification applications (Moran et 
al. 2002). SAR imagery could have served to increase confusion between Bramble and 
surrounding native vegetation when fused with S2 VIs.

The use of S2 VIs outperformed the benchmark accuracy achieved by conventional 
S2 optical imagery. Similar results were achieved by Kandwal et al. (2009), where se-
lected VIs performed well in discriminating Lantana camara (Verbenaceae), an invasive 
alien plant with similar growth pattern and phenology to Bramble. The majority of 
Vis, selected as VIP indices, were dominated by VIs incorporating the Near Infrared 
(NIR), Shortwave Infrared (SWIR) and red edge S2 bands. A study by Zhao et al. 
(2007) produced similar results, where VIs, derived from SWIR, red-edge and NIR 
bands, were reported to be closely correlated to canopy LAI and canopy chlorophyll 
density. Chuai et al. (2013), for instance, used NDVI to determine seasonal vegetation 
correlations with lag-time climatic effects in Inner Mongolia between 1998 and 2007. 
They established varied seasonal changes and concluded that NDVI provides a reliable 
measure of vegetation changes attributed to climatic variability. According to Domaç 
et al. (2004), VIs can extract valuable information by generating a new variable set 
without inter-band correlation and reduced data dimensionality. Whereas the NDVI 
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has commonly been preferred in vegetation mapping, El-Mezouar et al. (2010) sug-
gests that Soil Adjusted Vegetation Index (SAVI) is more suitable for mapping patchy 
vegetation characterised by lower percentage cover. A recent study by Tarantino et al. 
(2019) in Apulia region, southern Italy, concluded that indices like MSAVI on World-
View2 imagery are effective in discriminating the invasive Aillanthus aitissina species. 
This superior performance is attributed to the indices’ maximal reduction of back-
ground soil effect on vegetation reflectance (Qi et al. 1994). Other studies like Groβe-
Stoltenbeg et al. (2018) used 15 vegetation indices to determine an Acacia lonifolia 
cove in a dune ecosystem and concluded that the fusion of vegetation indices with LI-
DAR could effectively determine the effects of species invasion on the dune landscape.

Eight of the ten VIP VIs selected for Bramble discrimination and mapping were 
derived from at least one of these three spectral bands. The strong relationship between 
NIR, SWIR and red edge bands to variable vegetation parameters could have resulted 
in the increased accuracy of Bramble discrimination and mapping. Moreover, reflec-
tance within the visible region of the spectrum is largely determined by vegetation 
pigments and is commonly used to quantify vegetation physiological properties (Li et 
al. 2013; Zhao et al. 2007). The collective capability of combined VIs to discriminate 
various vegetation parameters could further explain the increased overall classification 
accuracy achieved using stand-alone vegetation indices.

Several studies (e.g. Royimani et al (in press) – Perthenium, Matongera et al. 
(2017) - Pteridium aquilinum (L.) Kuhn, Robinson et al. (2016) - Mesquite (prosopts 
spp.), Peters et al. (1992) - Gutierrezia sarothrae and Oumar (2016) - Lantana camara 
have discriminated invasive species from native vegetation using spectral variability. 
Matongera et al. (2017) and Zhao et al. (2009) attribute this to invasive species’ dis-
similar biophysical (e.g. texture, canopy, leaf structure and orientation) and biochemi-
cal (e.g. chlorophyll and water content) characteristics from the surrounding vegeta-
tion species. According to Blossey and Notzold (1995), invasive species are commonly 
characterised by superior physical development due to disproportionate availability or 
exploitation of resources. Such differences, particularly volume and height, facilitate 
their discrimination. Goodwin et al. (1999), for instance, noted that differences in 
stem heights and flowering periods could be used to discriminate invasive species from 
native vegetation, while Peerbhay et al. (2016) found that dense infestation, particu-
larly in new habitats, facilitate discrimination. Commonly, the phenology of invasive 
species differs from native plants. Holland and Aplin (2013) and Page (2010) note that 
the discreet reflectance of invasive species at different seasons offers great potential for 
their discrimination. This is consistent with Santos and Ustin (2018) who noted that 
fennel (Foeniculum vulgare) could be effectively discriminated by considering seasonal 
foliar variability from surrounding grasses. In this study, Bramble’s broad leafs could 
have facilitated its discrimination, a finding in agreement with Hong et al. (2014) who 
successfully discriminated alfalfa in the Prairie Provinces of Canada.

According to Motohka et al. (2010), the potential of green-red VIs for phenologi-
cal vegetation discrimination exists. VIs derived from ratios of red and green optical 
bands are known to be sensitive to variations in canopy colour, where changes in 
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visible characteristics of vegetation canopy are often timeously detected (Motohka et 
al. 2010). The SR672/550 VI, an index derived solely from S2 red and green optical 
bands, suggests an agreement with Motohka et al. (2010). The SR672/550 VI could 
have assisted in the discrimination of Bramble as it produces noticeable white inflores-
cence during summer, a significant phenological trait that could have been exploited. 
This potential is further enhanced by S2’s higher temporal resolution (five days, with 
possible higher resolution due to overlap in swaths of adjacent orbits) that facilitates 
single scene’s image turnover. Although the combined potential of VIs and SAR im-
agery produced the lowest overall classification accuracy, the potential of the latest 
and advanced spectrally derived VIs was evident when compared to the benchmark 
set by conventional S2 optical imagery. While the fusion of S2 VIs and SAR showed 
limited utility with regard to accurately mapping Bramble, the complementarity of 
these datasets has previously been documented. Our findings are consistent with ex-
isting literature. For instance, in lower Magdalena region, Colombia, Clerici (2017) 
established that Sentinel 1 and 2 fused dataset, classified using SVM, generated the 
highest classification accuracy of the existing land use land covers. Hence, the study 
recommended the use of radar sensor due to its all-weather capability and the spectral 
wealth of the optical sensor. Niculescu et al. (2018) mapped major vegetation types 
by fusing S1, S2 and SPOT – 6 in Pays de Brest, France by stacking time series data 
using Random Forest supervised classification. The study achieved a 93% classifica-
tion accuracy when the major vegetation indices (Normalised Difference Vegetation 
Index - NDVI, Normalised Difference Wetness Index NDWI, Inverted Red-Edge 
Chlorophyll Index - IRECI and Sentinel-2 Red-Edge Position - S2REP) were used 
in the classification process. The study recommends the use of S1 and S2 due to free 
availability and improved sensor capabilities.

Conclusion

This study utilised freely available advanced Sentinel-1 radar and Sentinel-2 optical 
imagery, with the aim of evaluating spectrally derived VIs and fusing Synthetic Aper-
ture Radar (SAR) imagery for improving American Bramble (Rubus cuneifolius) detec-
tion and mapping. This study contributes to the evaluation of economically viable, 
efficient and large scale invasive alien species detection and mapping. Conventional 
S2 optical imagery was used as a benchmark for comparison with results achieved 
using S2 VIs and fused VIs and S1 SAR imagery. The use of S2 VIs increased overall 
classification accuracies when compared to traditional optical imagery results, while 
the fusion of S2 VIs and S1 SAR decreased the overall accuracies. Hence this study 
demonstrated that new generation S2 VIs have the potential to increase the detec-
tion and mapping of Bramble from surrounding native vegetation. Results further 
indicate that the fusion of VIs and SAR imagery for Bramble detection and mapping 
failed to increase overall classification accuracies, hence have limited utility when ap-
plied to Bramble detection and mapping. The new generation satellites, such as S1 
and S2, possess unprecedented sensor characteristics like higher temporal and spatial 
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resolution, as well as tandem acquisition of SAR data, hence valuable for improved 
landscape mapping. This study concludes that the recently launched Sentinel satellite, 
with optical and radar capabilities, holds great promise in landscape delineation and 
vegetation mapping.
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