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Abstract
Invasive species of Pomacea snails are of growing concern when it comes to the conservation of global bio-
diversity. Pomacea canaliculata has been listed among the world’s 100 worst invasive species. In this work, 
phylogeographic patterns and the demographic history of P. canaliculata and P. maculata from different 
countries were analyzed using mtDNA cytochrome c oxidase subunit-I (COI) sequences. The results 
showed that P. canaliculata and P. maculata had high genetic diversity, significant genetic differentiation, 
limited gene flow and stable population dynamics among different countries. Genetic diversity of P. cana-
liculata was higher than P. maculata. Our study will also provide important information for the effective 
prevention and control of the spread of Pomacea snails.
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Introduction

Biological invasions are considered one of the highest causes of biodiversity loss on 
a global scale (Vitousek 1997; Ricciardi 2007; Thomaz et al. 2015). They are not 
only a major threat to the loss of native biodiversity and the structure and function 
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of ecosystems, but also seriously affect social and economic development and human 
health. Freshwater ecosystems are especially vulnerable as a result of widespread hu-
man disturbance (Havel et al. 2005; Turak et al. 2016). Invasive bivalves are among 
the most successful invasive species in freshwater ecosystems (Ricciardi 2007; Oliveira 
et al. 2011; Paschoal et al. 2015; Ng et al. 2018), which typically comprise r-selected 
species which adapt to colonize a wide range of aquatic environments and exhibit high 
fecundity, rapid growth, and broad physiological tolerance to several abiotic factors 
(Hayes et al. 2015; Nakano et al. 2015). Such characteristics allow them to become 
dominant species (Karatayev et al. 2007).

Pomacea (Gastropoda: Ampullariidae) is an edible large freshwater snail native to 
the Amazon River basin of South America (Cowie 2002). It was introduced as the ap-
ple snail to many countries of east and southeast Asia (China, Japan, Philippines, Ko-
rea, Vietnam, Thailand, Cambodia, Singapore, etc.; Cowie 2002; Joshi and Sebastian 
2006), the continental USA (Alabama, Arizona, California, Florida, Georgia, Texas; 
Rawlings et al. 2007), partial areas of Oceania (Papua New Guinea, New Zealand; 
Hayes et al. 2008), parts of Europe (Spain; Andree and López 2013), and some Pacific 
islands, notably the Hawaiian Islands (Tran et al. 2008) due to it having a high nutri-
tional value of rich protein, carotene, vitamins, and minerals. However, Pomacea snails’ 
economic potential was over-estimated because consumers disliked the snails’ taste and 
texture, but of the many, mostly small, aquaculture operations that arose, relatively few 
persisted and the local market failed to sell this snail (Cowie 2002; Hayes et al. 2008; 
Lv et al. 2013) and led people to give up farming Pomacea snails. Subsequently, these 
snails became pests of wetland rice and other crops, causing massive economic losses 
due to their wide adaptability to the freshwater habitat combined with a high fecun-
dity (Cowie 2002; Rawlings et al. 2007; Hayes et al. 2008). However, their ecological 
impacts are more difficult to estimate as they also continue to spread into nonagricul-
tural wetlands of many countries in the current period (Levin 2006; Wood et al. 2006; 
Rawlings et al. 2007). At the same time, Pomacea snails have been associated with the 
decline of native snails, and the loss of macrophytes and freshwater bryozoans in natu-
ral wetlands, resulting in shifts in ecosystem state and function (Carlsson et al. 2004; 
Carlsson and Lacoursière 2005; Wood et al. 2006). Additionally, Pomacea snails can 
affect human health, having driven the emergence of human eosinophilic meningitis 
in China: they have been identified as a major intermediate host of Angiostrongylus 
cantonensis, the rat lungworm (Lv et al. 2008, 2009a, b). Pomacea canaliculata was 
therefore listed among the world’s 100 worst invasive species (Lowe et al. 2000).

There have been many studies on Pomacea, such as distribution (Rawlings et al. 
2007), disease (Lv et al. 2009a, b; Lv et al. 2011), phylogenetic (Rawlings et al. 2007; 
Hayes et al. 2008; Hayes et al. 2009; Hayes et al. 2012; Lv et al. 2013), and taxonomy 
(Hayes et al. 2012). However, studies on phylogeographic patterns and the demo-
graphic history of Pomacea ssp have been minimal. The aim of this study is to analyze 
genetic diversity and structure of P. canaliculata in 17 countries and P. maculata from 
13 countries based on mtDNA COI sequences, which will provide a basis for effec-
tively preventing and managing the spread of these two species.
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Materials and methods

Data source

Pomacea belongs to the family Ampullariidae and is the largest of nine extant genera 
(Rawlings et al. 2007; Hayes et al. 2008). Due to their morphology there is consider-
able intraspecific variation and it is difficult to determine the true number of species 
(Cazzaniga 2002; Hayes et al. 2008). For example, the common name ‘golden apple 
snail’ also suggests that more than one species was recognized in Asia (e.g., Keaw-
jam and Upatham 1990; Mochida 1991; Yipp et al. 1991). At the same time, it had 
even been referred to several species such as Pomacea insularum (Orbigny, 1835) and 
P.  canaliculata (Lamarck, 1819) (Simpson et al. 1994; Roger 1996). Until recently, 
this snail was classified as two species, Pomacea canaliculata and P. maculata (as P. insu-
larum, which is now a junior synonym of P. maculata) based on molecular, anatomy, 
and morphological data (Hayes et al. 2008; Hayes et al. 2012; Matsukura et al. 2013; 
Lv et al. 2013).

Due to the widespread issues with misidentification of Pomacea species, 146 se-
quences or haplotype sequences of P. canaliculata and 164 sequences or haplotype 
sequences of P. maculata were downloaded from GenBank (Suppl. material 1) and 
were classified as two species P. maculata and P. canaliculata, according to Rawlings et 
al. (2007), Deaton et al. (2007), Hayes et al. (2008), Tran et al. (2008), Matsukura et 
al. (2008), Jørgensen et al. (2008), Hayes et al. (2009), Song et al. (2010), Collier et 
al. (2011), Andree and López (2013), Lv et al. (2013), Matsukura et al. (2013), Mu et 
al. (2015), Ng et al. (2016), Letelier et al. (2016), Perez et al. (2017), Bocxlaer et al. 
(2017) (Suppl. material 1). COI sequences of P. maculata and P. canaliculata included 
13 countries and 17 countries, respectively (Fig. 1).

Data analysis

The Clustal X1.81was used to align the mtDNA COI sequences of P. canaliculata and 
P. maculata, respectively (Thompson et al. 1997). DNASP 5.0 was used to analyze 
nucleotide composition, haplotype diversity (Hd) and nucleotide diversity (π) of the 
P. canaliculata and P. maculata for each country (Librado and Rozas 2009).

To test the phylogenetics of P. canaliculata (59 haplotypes) and P. maculata 
(42 haplotypes) COI haplotypes, MRBAYES v.3.2.2 was used to analyze a phyloge-
netic study using Bayesian inference (Ronquist et al. 2012). A comparison of 24 mod-
els of evolution was used to determine the initial model of evolution (HKY+G) in 
MRMODELTEST v.2.2. MRBAYES was run using 3,000,000 generations and six 
concurrent Markov Chains and 2 hot chains sampled at intervals of every 100 genera-
tions for a total of 30,000 trees. The stationarity of the log likelihood values was en-
sured using a 25% burn-in (7500 trees; Nylander 2004). Phylogenetic analyses includ-
ed COI sequences for Pomacea paludosa (GenBbank accession numbers EU528477 

http://www.ncbi.nlm.nih.gov/nuccore/EU528477
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Figure 1. Distribution for P. canaliculata and P. maculata from 17 countries and 13 countries, respectively.

and EF514960) and Pomacea diffusa (GenBank accession numbers EU528564 and 
MF462141). As outgroups for the Pomacea dataset, COI sequences for Pila conica 
were used (GenBank accession numbers EU528588 and EU274570). NETWORK 
4.5 was used to construct a haplotype network of the P. canaliculata (59 haplotypes) 
and P. maculata (42 haplotypes) COI haplotypes based on a 95% connection limit 
with gaps defined as missing data (Leigh and Bryant 2015).

A hierarchical analysis of molecular variance (AMOVA) was used to evaluate pat-
terns of genetic structure in the COI dataset based on Arlequin 3.5 (Excoffier and 
Lischer 2010). The AMOVA was used to partition variance components to popula-
tions and to individuals within each collection location, where 1000 permutations 
were performed to test the significance of each pairwise P. canaliculata and P. maculata 
population comparison, respectively. Arlequin 3.5 was used to conduct a test for isola-
tion by-distance by testing the significance of a correlation between pairwise Nei’s D 
and geographic distance among country (Excoffier and Lischer 2010). A Mantel test 
was used to analyze the correlation computations between pairwise genetic and geo-
graphic distances between countries (Jensen et al. 2005). ArcMap GIS (ESRI) was used 
to measure the geographic distances within countries.

To examine deviations from neutrality of P. canaliculata and P. maculata for each 
country, Arlequin 3.5 was used to conduct Tajima’s D and Fu’s Fs tests (Excoffier and 
Lischer 2010). DNASP 5.0 was used to analyze mismatched distribution analysis 
(MDA) of P. canaliculata and P. maculata for each country. BEAST 1.4.7 (Drummond 
and Rambaut 2007) was used to compute the Bayesian Skyline Plot (BSP) (Drum-
mond et al. 2005) analysis. BSP was used to reconstruct the effective population size 
fluctuations since the time of the most recent common ancestor (TMRCA). MCMC 
was run for 500 million steps, with sampling every 1000 generations and following a 
burn-in of the initial 10% cycles. TRACER 1.5 was used to conduct inspections of 

http://www.ncbi.nlm.nih.gov/nuccore/EF514960
http://www.ncbi.nlm.nih.gov/nuccore/EU528564
http://www.ncbi.nlm.nih.gov/nuccore/MF462141
http://www.ncbi.nlm.nih.gov/nuccore/EU528588
http://www.ncbi.nlm.nih.gov/nuccore/EU274570
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the results and construction of the BSP (Rambaut and Drummond 2007). The model 
comparison function in TRACER 1.5 was used to assess the fit of the constant size 
population model and Bayesian Skyline coalescent models to the dataset.

Results

Phylogeographic patterns

Fifty-nine and 42 unique COI haplotypes of P. canaliculata and P. maculata were 
identified from 17 and 13 countries globally, respectively. The China-mainland and 
Brazil had the greatest variation with 24 haplotypes and 26 haplotypes in P. canali-
culata and P. maculata, respectively (Table 1). Both haplotypes’ diversity values of P. 
canaliculata and P. maculata at each population varied between 0 and 1.000 (Table 2). 
The greatest haplotype diversity of P. canaliculata occurred in Thailand, Philippines, 
Korea, Vietnam and Uruguay and P. maculata occurred in Vietnam and Thailand. 
Nucleotide diversity values of P. canaliculata ranged from 0 to 0.093 and P. maculata 
ranged from 0 to 0.029 (Table 2). The greatest nucleotide diversity of P. canaliculata 
occurred in Uruguay and P. maculata occurred in Brazil. In addition, the haplotype 
diversity of P. canaliculata and P. maculata of South America was greater than other 
continents (Table 2).

Phylogenetic analysis (Fig. 2a) showed that the clade of P. canaliculata had strong 
support (1.00). The 59 haplotypes of P. canaliculata were divided into four clades: 
27 haplotypes of P. canaliculata from Argentina, USA, Papua New Guinea, Myanmar, 
Korea, Philippines, Vietnam, Malaysia, Japan, Chile, Thailand, Indonesia, China-Tai-
wan, and China formed one clade. Thirteen haplotypes of P. canaliculata from Philip-
pines, Japan, Laos, Vietnam, and China formed a second clade. Eight haplotypes of 
P. canaliculata from Argentina, Japan, China-Taiwan, Uruguay, and Singapore formed 
a third clade, and eleven haplotypes of P. canaliculata from Argentina, Myanmar, Ko-
rea, China-Taiwan, Uruguay, Japan, and China formed the last clade.

Phylogenetic analysis (Fig. 2b) showed the clade of P. maculata had strong support 
(1.00). The 42 COI haplotypes of P. maculata were divided into two clades: 32 hap-
lotypes of P. maculata from Brazil, Argentina, USA, Spain, Singapore, New Zealand, 
Vietnam, Malaysia, Thailand, Cambodia, and China formed one clade and ten haplo-
types of P. maculata from Brazil, Argentina, USA, Japan, Korea, Thailand, and China 
formed a second clade.

The single haplotype network was produced based on COI haplotypes of P. cana-
liculata and P. maculata (Fig. 3a, b). The most frequent haplotypes of P. canaliculata 
and P. maculata were Hap4 and Hap17, which had 43 and 37 individuals. Forty-eight 
and 18 haplotypes were rare haplotypes in both P. canaliculata and P. maculata and just 
a single individual occurred in a country. As seen in the phylogeny of P. canaliculata 
and P. maculata (Fig 2a, b), the results of the haplotypes network also showed a similar 
geographic structure.
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Table 1. Haplotype distributions of Pomacea canaliculata and Pomacea maculata from 17 countries and 
13 countries, respectively.

Continent Country(code) Pomacea canaliculata Pomacea maculata
Number of 

haplotype sequences 
or sequences

Haplotype distribution Number of 
haplotype sequences 

or sequences

Haplotype distribution

Asia China-mainland 
(CM)

31 Hap4, Hap30, Hap31, 
Hap33, Hap34, Hap35, 
Hap42, Hap43, Hap44, 
Hap45, Hap46, Hap47, 
Hap48, Hap49, Hap50, 
Hap51, Hap52, Hap53, 
Hap54, Hap55, Hap56, 
Hap57, Hap58, Hap59

6 Hap17, Hap27, Hap28

China-Taiwan 
(CT)

4 Hap4, Hap34, Hap36 – –

Japan (JA) 22 Hap4, Hap5, Hap25, 
Hap30, Hap33, Hap34, 

Hap35, Hap36

6 Hap17, Hap37

Philippines (PH) 13 Hap4, Hap20, Hap21, 
Hap22, Hap23, Hap24, 
Hap25, Hap26, Hap27, 
Hap28, Hap29, Hap30, 

Hap31

– –

Vietnam (VI) 2 Hap4, Hap30 2 Hap17, Hap42
Thailand (TH) 2 Hap37, Hap38 2 Hap17, Hap37
Myanmar (MY) 3 Hap4, Hap33 – –

Korea (KO) 2 Hap4, Hap34 1 Hap38
Indonesia (IN) 3 Hap40, Hap41 – –

Laos (LA) 1 Hap30 – –
Malaysia (MA) 2 Hap4 1 Hap17
Cambodia (CA) – – 1 Hap17
Singapore (SI) 1 Hap36 1 Hap17

Oceania Papua New Guinea 
(PNG)

2 Hap4 – –

New Zealand (NZ) – – 1 Hap17
Europe Spain (SP) – – 9 Hap17
North 
America

United States 
(USA)

20 Hap4 66 Hap17, Hap37, Hap38, 
Hap39, Hap40, Hap41

South 
America

Uruguay (UR) 2 Hap32, Hap39 – –
Chile (CH) 4 Hap4 – –
Brazil (BR) – – 54 Hap1, Hap2, Hap3, 

Hap4, Hap5, Hap6, 
Hap7, Hap8, Hap9, 

Hap10, Hap11, Hap12, 
Hap14, Hap15, Hap16, 
Hap17, Hap18, Hap19, 
Hap20, Hap21, Hap22, 
Hap23, Hap24, Hap25, 

Hap26
Argentina (AR) 32 Hap1, Hap2, Hap3, 

Hap4, Hap5, Hap6, 
Hap7, Hap8, Hap9, 

Hap10, Hap11, Hap12, 
Hap14, Hap15, Hap16, 
Hap17, Hap18, Hap19

15 Hap29, Hap30, Hap31, 
Hap32, Hap33, Hap34, 
Hap35, Hap36, Hap37, 

Hap38

The AMOVA results showed that 23.84% and 37.77% of the total genetic 
variance among countries was significant (FST =0.23836 and 0.37772, p<0.001, 
Table 3), respectively. Pairwise FST of P. canaliculata and P. maculata all ranged 
from -1.00 to 1.00 among countries (Table 4, Table 5). Pairwise gene flow of 
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Table 2. Genetic diversity of Pomacea canaliculata and Pomacea maculata from 17 countries and 13 
countries of global based on COI sequences, respectively. Key: H = number of haplotypes, Hd = haplotype 
diversity, π = mean nucleotide diversity.

Continent Country Pomacea canaliculata Pomacea maculata
H Hd Π H Hd π

Asia China-mainland 24 0.968 0.030 3 0.700 0.023
China-Taiwan 3 0.833 0.032 – – –

Japan 8 0.835 0.029 2 0.600 0.009
Philippines 13 1.000 0.028 – – –
Vietnam 2 1.000 0.044 2 1.000 0.002
Thailand 2 1.000 0.002 2 1.000 0.016
Myanmar 2 0.667 0.029 – – –

Korea 2 1.000 0.038 1 0 0
Indonesia 2 0.667 0.001 – – –

Laos 1 0 0 – – –
Malaysia 1 0 0 1 0 0

Cambodia – – – 1 0 0
Singapore 1 0 0 1 0 0

Total 42 0.924 0.030 6 0.695 0.023
Oceania Papua New Guinea 1 0 0 – – –

New Zealand – – – 1 0 0
Total 1 0 0 1 0 0

Europe Spain – – – 1 0 0
Total – – – 1 0 0

North America United States 1 0 0 5 0.708 0.006
Total 1 0 0 5 0.708 0.006

South America Uruguay 2 1.000 0.093 – – –
Chile 1 0 0 – – –
Brazil – – – 26 0.970 0.029

Argentina 19 0.924 0.023 10 0.914 0.018
Total 21 0.933 0.031 36 0.978 0.030

Global Total 59 0.853 0.029 42 0.893 0.022

P. canaliculata and P. maculata all ranged from 0 to 249.75 among the countries 
(Table 4, Table 5).

Genetic differentiation as represented by pairwise genetic distance values of P. can-
aliculata (P = 0. 816) and P. maculata (P = 0. 527) among countries was not correlated 
with geographic distance, indicating that more geographically distant site combina-
tions did not produce higher levels of genetic differentiation.

Demographic history

The mismatch distribution of analysis of pairwise differences was not significantly dif-
ferent from the expected distribution of the expanding population model based on 
COI sequences of P. canaliculata and P. maculata (Fig. 4a, b). Similarly there was a 
lack of statistical significance of Tajima’s D test (p < 0.01), and non-significant Fu’s FS 
(p < 0.01). Moreover, when all samples were pooled together, Tajima’s D and Fu’s FS 
test were again not significant (p < 0.01, Table 6). Additionally, the BSPs showed that 
P. canaliculata and P. maculata have had a stable historical population size with a small 
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Figure 2. Phylogenetic analysis of the COI sequences for P. canaliculata (a) and P. maculata (b) from 17 
countries and 13 countries using Bayesian Inference (BI), respectively.

a
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b

Figure 2. Continued. Phylogenetic analysis of the COI sequences for P. canaliculata (a) and P. maculata 
(b) from 17 countries and 13 countries using Bayesian Inference (BI), respectively.
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Figure 3. Haplotype network for P. canaliculata (a) and P. maculata (b) from 17 countries and 13 coun-
tries of global based on COI sequences. Each cross-hatched line represents one base-pair.

b

a
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Table 3. Analysis of molecular variation (AMOVA) calculated from mtDNA COI sequences for Pomacea 
canaliculata and Pomacea maculata from 17 countries and 13 countries, respectively. All F-statistics were 
statistically significant (p<0.001). Key: FST=0.23836; FST=0.37772.

COI sequences P. canaliculata P. maculata
Source of variance df Sum of 

squares
Variance 

components
Percentage of 

variation
df Sum of 

squares
Variance 

components
Percentage of 

variation
Among populations 17 322.04 1.78 23.84 12 380.34 2.72 37.77
Within populations 129 733.73 5.69 76.16 153 686.62 4.49 62.23
Total 146 1055.77 7.47 – 165 1066.95 1.73 –

Table 4. Analysis of genetic differentiation coefficient (Fst) (below diagonal) and gene flow (Nm) (above 
diagonal) calculated using COI mtDNA sequence data among 13 countries of Pomacea maculata in glob-
al. Bold type indicates statistical significance (α = 0.05). Country codes as in Table 1.

CM JA VI TH KO MA CA SI NZ SP USA BR AR
CM 249.750 0.194 11.114 8.371 0.190 0.194 0.189 3.481 249.750 0.496 249.750 0.524
JA 0.001 0.084 49.750 20.583 1.284 0.077 0.071 0.444 31.000 0.762 249.750 0.796
VI 0.563 0.749 0.256 NA NA NA NA NA NA NA 0.534 NA
TH 0.022 0.005 0.494 3.917 0.255 0.254 0.251 1.474 49.750 0.633 249.750 0.615
KO 0.029 0.012 1.000 0.060 1.523 NA NA 0.290 5.432 NA 0.406 0.454
MA 0.568 0.163 1.000 0.495 0.141 NA NA 0.738 2.177 NA 0.159 NA
CA 0.563 0.765 -1.000 0.496 1.000 1.000 NA NA NA NA 0.549 NA
SI 0.570 0.779 -1.000 0.499 1.000 1.000 -1.000 NA NA NA 0.534 NA
NZ 0.067 0.360 -1.000 0.145 0.463 0.253 -1.000 -1.000 NA 0.372 1.962 0.380
SP 0.001 0.008 -1.000 0.005 0.044 0.103 -1.000 -1.000 -1.000 1.139 249.750 1.124
USA 0.335 0.247 1.000 0.283 1.000 1.000 1.000 1.000 0.402 0.180 0.079 NA
BR 0.001 0.001 0.319 0.001 0.381 0.611 0.313 0.319 0.113 0.001 0.759 8.083
AR 0.323 0.239 1.000 0.289 0.355 1.000 1.000 1.000 0.397 0.182 1.000 0.030

Table 5. Analysis of genetic differentiation coefficient (Fst) (below diagonal) and gene flow (Nm) (above 
diagonal) calculated using COI mtDNA sequence data among 17 countries of Pomacea canaliculata in 
global. Bold type indicates statistical significance (α = 0.05). Country codes as in Table 1.

CM CT JA PH VI TH MY KO IN LA MA SI PNG USA UR CH AR
CM 24.750 0.004 2.002 27.528 0.059 0.212 NA 0.025 NA 10.620 0.235 0.422 0.640 41.417 0.581 0.059
CT 0.010 0.004 0.902 1.869 0.034 0.048 NA NA NA 0.244 0.146 0.194 0.391 249.750 0.411 0.000
JA 0.986 0.984 7.815 0.125 0.508 1.000 NA 0.330 NA 0.114 1.006 1.498 3.596 NA 3.596 0.496
PH 0.111 0.217 0.031 24.750 0.377 0.261 0.982 0.982 1.000 0.119 0.240 0.994 0.373 249.750 0.375 0.378
VI 0.009 0.118 0.666 0.010 NA 0.113 0.052 0.142 0.049 22.477 0.578 0.074 4.136 249.750 3.782 NA
TH 0.809 0.881 0.330 0.399 1.000 NA NA NA NA NA NA NA NA 2.497 NA NA
MY 0.541 0.839 0.200 0.489 0.689 1.000 0.505 0.256 0.499 NA NA 0.164 NA 4.958 NA NA
KO 1.000 1.000 -1.000 0.203 0.829 1.000 0.331 NA NA NA 0.496 0.164 0.496 NA 0.494 NA
IN 0.910 1.000 0.431 0.203 0.638 1.000 0.494 1.000 NA NA 0.243 0.267 0.385 1.630 0.377 NA
LA 1.000 1.000 -1.000 0.200 0.836 1.000 0.334 -1.000 1.000 NA 0.499 0.168 0.499 NA 0.490 NA
MA 0.023 0.506 0.686 0.678 0.011 1.000 1.000 1.000 1.000 1.000 NA 0.038 NA 249.750 NA NA
SI 0.515 0.632 0.199 0.510 0.302 1.000 1.000 0.335 0.507 0.334 1.000 NA NA 5.185 NA NA
PNG 0.372 0.563 0.143 0.201 0.772 1.000 0.604 0.604 0.484 0.598 0.869 1.000 0.291 83.083 0.289 0.093
USA 0.281 0.390 0.065 0.401 0.057 1.000 1.000 0.335 0.394 0.334 1.000 1.000 0.462 62.250 NA NA
UR 0.006 0.001 -1.000 0.001 0.001 0.091 0.048 -1.000 0.133 -1.000 0.001 0.046 0.003 0.004 62.250 2.438
CH 0.301 0.378 0.065 0.400 0.062 1.000 1.000 0.336 0.399 0.338 1.000 1.000 0.464 1.000 0.004 NA
AR 0.809 1.000 0.335 0.398 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.729 1.000 0.093 1.000
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Figure 4. Mismatch distribution analysis (MDA) for P. canaliculata (a) and P. maculata (b) from 17 
countries and 13 countries based on COI sequences.

b

a

recent expansion event occurring between 100,000 – 150,000 and 150,000 – 200,000 
years ago, respectively (Fig. 5a, b). However, the model comparison analysis showed 
that constant population size was the best fit for the model of the data set, suggesting 
that there was not much support for the recent expansion trend.

Discussion

Phylogeographic patterns

Genetic diversity is an important basis for evaluating the status of population resourc-
es, which plays an important role in adaptations to habitat changes and maintenance 
of long-term survival and evolution (Freeland et al. 2011; Liu and Yao 2013; Liu et 
al. 2017). Invasive bivalves and Pomacea snails are typically r-selected species, which 
means they are adapted to colonize a wide range of aquatic environments and exhibit 
high fecundity, rapid growth, and broad physiological tolerances to several abiotic 
factors. In this study, P. canaliculata and P. maculata had high genetic diversity (0.853 
and 0.893), which indicates adaptations to enable colonization of a wide range of 
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Table 6. Neutrality tests for P. canaliculata and P. maculata from 17 countries and 13 countries based on 
mtDNA COI sequences, respectively. Bold type indicates statistical significance (P < 0.01).

Country P. canaliculata P. maculata

Pi (%) Tajima’s D Fu’s FS Pi (%) Tajima’s D Fu’s FS

China-mainland 15.13 0.16 -3.98 13.40 -1.15 4.50
China-Taiwan 16.33 0.34 3.47 – – –
Japan 14.54 0.70 6.33 5.40 2.20 5.78
Philippines 13.98 1.38 -4.39 – – –
Vietnam 22.00 0 3.09 1.00 0 0
Thailand 1.00 0 0 9.00 0 2.20
Myanmar 14.67 0 4.86 – – –
Korea 19.00 0 2.94 0 0 0
Indonesia 0.67 0 0.20 – – –
Laos 0 0 0 – – –
Malaysia 0 0 0 0 0 0
Cambodia – – – 0 0 0
Singapore 0 0 0 0 0 0
Papua New Guinea 0 0 0 – – –
New Zealand – – – 0 0 0
Spain – – – 0 0 0
United States 0 0 0 3.74 1.72 4.73
Uruguay 47.00 0 3.85 – – –
Chile 0 0 0 – – –
Brazil – – – 16.80 0.44 -0.46
Argentina 11.53 -0.02 -2.30 10.65 -2.37 0.17
Total 14.46 -0.79 -13.49 12.93 -1.24 -2.61

habitats. However, genetic diversity of ancestral populations (Brazil, Argentina, etc.) 
was higher than the recently established populations (Singapore, Papua New Guinea, 
New Zealand, Spain, etc.). The low haplotype diversity may be attributed to:

1)	 possible genetic exchange, genetic bottlenecks and genetic drift (Matsukura et al. 
2013; Shirk et al. 2014), which could be the result of the initial founder event that 
led to speciation in P. canaliculata and P. maculata (Freeland et al. 2011);

2)	 the introduction of alien species to a non-native location may not be directly from 
the native range, but from a successful invasive population elsewhere, which could 
be the result of the bridge-head effect (Eric et al. 2010);

3)	 sample numbers of Pomacea for each country were significantly different for this 
study, so further genetic analysis is needed to clarify this (Hayes et al. 2008);

4)	 growth and reproduction of P. canaliculata and P. maculata are closely related to 
water temperature: many studies showed that the snail was not adapted to low 
temperatures (Andree and López 2013; Byers et al. 2013; Hayes et al. 2015; Ber-
natis et al. 2016). In addition, climate change (Byers et al. 2013) and environment 
factors such as pH (Byers et al. 2013), calcium carbonate (White et al. 2007; Perl-
man 2016), dissolved oxygen (Seuffert and Martín 2009), salinity (Verbrugge et al. 
2012; Martin and Valentine 2014) may affect their life history.
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Figure 5. Bayesian skyline plot for P. canaliculata (a) and P. maculata (b) from 17 countries and 13 countries 
reconstructing the population size history using an evolutionary rate of 2.0 × 10−8 substitutions/site/year.

b

a

5)	 genetic diversity of P. canaliculata and P. maculata is related to human factors. 
Pomacea was introduced to many countries as food, but its economic potential was 
overestimated. Some regions, such as North America and Europe, attached great 
importance to the prevention and management of invasive species, which made it 
difficult for them to survive (Hayes et al. 2015; Joshi et al. 2017).

The geographic structure among countries using the mtDNA COI dataset was 
somewhat ambiguous. The phylogenetic analysis showed 59 haplotypes of P. canali-
culata divided into four clades. These results also indicated a complicated pattern of 
introduction into non-native countries. The somewhat ambiguous genetic structures 
that may be attributed to Pomacea were introduced to many areas where they are con-
sumed as food (Lv et al. 2009a; Hayes et al. 2008; Lv et al. 2013; Joshi et al. 2017).
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Genetic differentiation was high in different countries hosting P. maculata and 
P. canaliculata. In addition, estimates of gene flow (Nm) were generally low (i.e., Nm <1). 
The higher level of genetic differentiation and low gene flow may be attributed to:

1)	 geographical isolation as an important factor that affects distribution patterns and 
genetic structure of species (Hayes et al. 2008; Lv et al. 2013). Pomacea are am-
phibious and show a preference for shallow ditches and ponds surrounding human 
settlements in which the water habitat is relatively isolated (Cowie 2002; Hayes et 
al. 2012; Joshi et al. 2017);

2)	 the dispersal ability of Pomacea is relatively low and its activity range is limited 
(Cowie 2002; Hayes et al. 2012; Joshi et al. 2017), which may lead to a gradual 
reduction of gene flow, and resulting in genetic differentiation among populations;

3)	 introduced populations usually experience a bottleneck if founded by a few in-
dividuals, and their genetic variability is expected to decrease in the newly colo-
nized range (Dlugosch and Parker 2008; Hayes et al. 2008; Lv et al. 2013; Joshi 
et al. 2017).

In theory, an increase of geographic distance should correlate with a gradual reduc-
tion of gene flow, resulting in genetic differentiation among populations, i.e., isolation-
by-distance (Hurtrez-Boussès et al. 2010; Husemann et al. 2012). However, genetic 
differentiation as represented by pairwise genetic distance values of P. canaliculata 
(P = 0. 816) and P. maculata (P = 0. 527) among countries was not correlated with 
geographic distance, which indicated more geographically distant site combinations 
did not produce higher levels of genetic differentiation.

Demographic history

The mismatch distribution analysis and neutrality tests showed that P. maculata and 
P. canaliculata across 17 and 13 countries, respectively, did not have recent population 
expansions. These analyses also indicated that the population dynamics of P. maculata 
and P. canaliculata are quite stable. This is not a surprising result because P. maculata 
and P. canaliculata are typically r-selected species and widely distributed in many coun-
tries. In addition, the stable historical population size with a small recent expansion 
may be attributed to:

1)	 the glacial period has had an important influence on the spatial distribution pat-
tern and genetic structure of species (Clark and Mccabe 2009). During the Qua-
ternary glacial period there were many glacial processes in the high and middle 
latitudes of the world due to the decrease of global temperature, which might have 
contributed to the Pomacea populations experiencing a small recent expansion in 
South America (Per et al. 2017);

2) possibly a constant population size was the best fit for the model to the data set, sug-
gesting that there was not much support for the recent expansion trend.
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Conclusions

Biological invasions are of growing concern regarding the conservation of global bio-
diversity (Lv et al. 2013). In recent decades, there has been a dramatic increase in 
species introductions with the increasing travel and trade associated with rapid eco-
nomic globalization (Blumental 2006). Pomacea is a successful invader which possesses 
many characteristics, such as high reproductive capability and dietary flexibility, rapid 
growth rate, and strong resistance to environmental conditions (Estebenet and Martín 
2002; Cowie 2002; Boland et al. 2008). Currently, Pomacea show a tendency to ex-
pand in many countries (Rawlings et al. 2007; Hayes et al. 2008; Byers et al. 2013; Lv 
et al. 2013). In this study, P. canaliculata and P. maculata showed high genetic diversity, 
significant genetic differentiation, limited gene flow, and stable population dynamics 
among different countries.
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