
Morphometrics of Parnassius apollo in a historical collection 79

Environmental stress in Parnassius apollo reflected 
through wing geometric morphometrics in a  

historical collection with a possible connection to 
habitat degradation

Martin Štefánik1, Peter Fedor1

1 Department of Environmental Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia

Corresponding author: Martin Štefánik (stefanik16@uniba.sk)

Academic editor: R. Julliard  |  Received 25 November 2019  |  Accepted 12 February 2020  |  Published 18 March 2020

http://zoobank.org/FBA7B6E8-AC78-4E83-9362-53F4490BC606

Citation: Štefánik M, Fedor P (2020) Environmental stress in Parnassius apollo reflected through wing geometric 
morphometrics in a historical collection with a possible connection to habitat degradation. Nature Conservation 38: 
79–99. https://doi.org/10.3897/natureconservation.38.48682

Abstract
Monitoring climate changes and habitat degradation in threatened species without negative impact to the 
populations can pose a considerable challenge. A rare chance to test the morphological response of wing 
shape and size to environmental factors on the mountain Apollo (Parnassius apollo) collected from 1938 
to 1968 at a single location – Strečno mountain pass, N Slovakia presented itself in a historical collection. 
The canonical variate analysis showed a significant shift from a narrower to broader forewing, with more 
extremes in either extra broad or narrow forewings in the post- 1960 population. Analysis of existing data 
was conducted to determine the possible factors affecting this change. Generally, the comparative statistics 
of temperature and precipitation to morphology of individuals and their fluctuating asymmetry showed no, 
or weak, correlations. Two extreme weather events (ECEs), identified using the historical weather data, show 
no correlation of wing morphology to these events. Although no strong correlations can be drawn in case of 
the available weather data and morphology, the results of this study can be connected to strong anthropo-
genic effects of a large-scale road development project taking place in the vicinity of the collection site start-
ing in November 1959 causing changes in the available habitat and therefore a shift in the wing morphology.
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Introduction

Sudden or continual alterations to the environment caused by natural or anthropo-
genic processes have been of interest to the scientific community for some time (Stern 
et al. 1992). Monitoring these environmental changes has become an essential compo-
nent of applied ecology, using suitable species (bioindicators) and their assemblages to 
analyze environmental stress and disturbance (Dubovský et al. 2010; Zvaríková et al. 
2016). There is a large body of work concerning the negative effects in populations of 
arthropod fauna, including butterflies, to various environmental changes (Van Swaay 
and Martin 1999; Descimon et al. 2005; Wenzel et al. 2006; Nakonieczny et al. 2007; 
Van Dyck et al. 2009; da Rocha et al. 2010; Gibbs et al. 2011; Wallner et al. 2013). 
Due to the more extreme nature of these changes in mountainous regions the native 
populations face even higher risk of population reduction and potential extinction 
(Nogués-Bravo et al. 2007). The same risks must be expected for their host and nectar 
plants to which their life cycle is bound (Engler et al. 2011).

Among bioindicators, detectors may provide an important material to detect re-
sponse based on their body morphology (Blake et al. 1994; Findlay and Houlahan 
1997; Clarke et al. 2000; Spellerberg 2005; Zvaríková et al. 2016). Generally, all 
organisms exhibit a certain degree of morphological (phenotypic) plasticity (Anan-
thakrishnan and Whitman 2005; Hoffmann et al. 2005; Sukhodolskaya and Saveliev 
2014), which describes the capacity of a genotype to display a range of phenotypes 
in response to changes in the environment (Garland and Kelly 2006; Whitman and 
Agrawal 2009) allowing organisms to maintain high fitness in the face of environmen-
tal heterogeneity (Pigliucci et al. 2006). The monitoring of these changes in morphol-
ogy is heavily focused on the symmetries and asymmetries of individuals in attempts 
to describe the underlining factors of these changes (Ananthakrishnan and Whitman 
2005; Zvaríková et al. 2016).

Asymmetry in individuals’ morphology is often used to illustrate isolation effects, 
reduction in genetic diversity, and lower fitness of populations or environmental stress 
(Valen 1962; Parsons 1990; Frankham 2005; Allendorf et al. 2013; Beasley et al. 2013; 
Woods et al. 1999). Within previous research, population genetic diversity was neg-
atively correlated to the level of asymmetry on multiple occasions (Vrijenhoek and 
Lerman 1982; Blanco et al. 1990; Hoelzel et al. 2002). Higher levels of morphologi-
cal asymmetry in birds corresponded with higher mortality during extreme climatic 
events (Brown and Brown 1998). In contrast to these claims are examples of naturally 
highly inbred populations where the benefits of outbreeding are not always main-
tained (Fountain et al. 2015). Fluctuating asymmetry (FA) of individuals’ morphology 
is often used as an indicator for population fitness, although the complex nature of 
the origin and expression of fluctuating asymmetry (FA) or lack thereof shows that a 
unification of these results may be impossible, and the problem therefore requires a 
case-by-case approach (Kaeppler 2012; Windig et al. 2000).

A reliable evaluation of insect morphology vs. environment interaction requires 
a long-term monitoring of a suitable model species with sufficient information on its 
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autecology as well as environmental disturbance details (Webster and Sheets 2010). 
Using historical collections, we offer an analysis of the mountain Apollo, Parnassius 
apollo (Linnaeus, 1758), a xeromontainous papilionid butterfly with diminishing dis-
tribution across Europe. The species has been in long-term decline since the 1900s due 
to lack of land management and global climate change (Todisco et al. 2010). Current 
populations are now usually present in small, often isolated patches, unable to colonize 
new habitats (Fred et al. 2006). Although its physiological predispositions would allow 
the Apollo butterfly to migrate longer distances, its successful reproduction remains 
restricted to the distribution of its larval host plant (Sedum sp.) located on open rock 
formations (Brommer and Fred 1999). The survival of these small populations was 
hypothesized to be due to the ability to maintain a low long-term effective population, 
which may result from a strong historic bottleneck or a founder event (Habel et al. 
2009). Due to the continuous decline in population this species has been listed in the 
IUCN Red List of Threatened Species, the appendix II in CITES, as well as the annex 
IV of Habitats Directive.

The isolation effect on the phenotype of Parnassius apollo was previously tested 
on western European populations, showing similar levels of asymmetry throughout 
the region (Habel et al. 2012), however higher levels of asymmetry were presented by 
Adamski and Witkowski (2002) in a post-bottleneck population when compared to 
the pre-bottleneck individuals. The populations of the Carpathian region (Eastern/
Central European) were determined as genetically homogeneous (Todisco et al. 2010), 
although multiple subspecies based on morphology are considered (Hrubý 1964; Cap-
deville 1978; Kizek 1997).

Although the pressures on selection in butterfly wing morphology remain largely 
unknown, the strongest factors seem to be habitat, predators and sex-specific behavior 
(Le Roy et al. 2019). Contrasting habitats (Jugovic et al. 2018), restoration attempts 
(Sivakoff et al. 2016) or landscape structure (Merckx and Van Dyck 2006) show im-
pact on the resulting wing morphology in butterflies. The material of mounted Parnas-
sius apollo specimens by a single collector at a location in the vicinity of an important 
north Slovakian trade and travel route presents an ideal dataset for the analysis of 
ecological (temperature and precipitation) and environmental (stress and disturbance) 
factors along a 30-year long period in the mid-20th century. A thorough analysis of the 
correlation strength of weather and extreme climatic events to the resulting changes 
in morphology was conducted. We hypothesize that the anthropic impact at the col-
lection sites could induce a change in the morphology of the P. apollo wing observed 
through the geometric morphometry.

Material and methods

All 506 Parnassius apollo specimens used for this analysis belong to the historical col-
lection (1938–1968) of the Slovak National Museum (Bratislava, Slovakia) and were 
mounted by Ján Zelný. Since the whole collection has been the work of a single col-
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lector it presents an ideal study opportunity, reducing the variable of multiple collec-
tors or preparation techniques used. The material refers to a single location at Strečno 
mountain pass, N Slovakia (49°10'07.6"N, 18°52'51.6"E) (Fig. 1), at the altitude of 
450 m a. s. l.

Digitization and morphometric analyses

Each individual was photographed from the dorsal side using a digital camera (Canon 
60D, 50 mm lens) under standardized light conditions, with the added size standard 
(5cm with 1mm increments) fixed at the height of the wing. Geometric morphometric 
analysis was based on 17 landmarks (10 landmarks on forewing and 7 on hindwing), 
situated terminally or on vena intersection (Fig. 2) to assure the repeatability of the 
landmarks on the highest numbers of individuals (Habel et al. 2012).

A database (.TPS file) of all digitized specimens was created using tpsUtil64 
(version 1.70) software (http://life.bio.sunysb.edu/morph/soft-utility.html, accessed 
23.11.2018) and imported to tpsDIG2×32 (version 2.26) software (http://life.bio.su-
nysb.edu/morph/soft-dataacq.html, accessed 23.11.2018) where all landmarks were 
set. TPS file containing the landmarks for each specimen was imported to MorphoJ 
software (version 1.06d) (Klingenberg 2008, 2011).

To address the potential influence of digitization or setting of the landmarks on 
our results, individuals were tested for digitization and measurement error. To test for 
digitization error, 50 specimens were randomly selected, photographed twice, meas-
ured and the results compared. The measurement error was addressed by measuring 
the whole dataset twice by the same person and compared (Palmer and Strobeck 1986; 
Klingenberg and McIntyre 1998).

The weather data was obtained from the archives of the Slovak Hydrometeorologi-
cal Institute (SHMI) for the locations closest to the collection site. The precipitation 
data was recorded at location Vrútky, Slovakia (49°06'42.7"N, 18°55'26.2"E), 7 km 
south from the collection site and Varín, Slovakia (49°12'05.4"N, 18°52'12.4"E) 3 km 
north of the collection site. The closest site collecting temperature data was maintained 
by the Slovak Army at the Žilina Airport, Slovakia (49°13'59.1"N, 18°36'47.4"E) 
located 20 km west of the collection site. All data on temperature prior to 1944 was 
probably lost, therefore comparative statistics between morphometric data and tem-
perature was conducted only for the dataset 1944–1968. The data of monthly pre-
cipitation and temperature, and yearly precipitation and temperature, were correlated 
to symmetric and asymmetric components, centroid size and Procrustes FA scores of 
Procrustes coordinates exported from MorphoJ and analyzed using “corrr” package in 
R (RStudio Team 2015). The extreme climatic events (ECEs) were selected accord-
ing to the ability of the collected weather data to display these events. In the case of 
extreme temperatures, the highest monthly and yearly temperature did not exceed the 
averages for the location and we therefore did not consider high temperatures from 
1944 – 1968 to display any ECEs. In the case of low temperatures, February 1956, ac-

http://life.bio.sunysb.edu/morph/soft-utility.html
http://life.bio.sunysb.edu/morph/soft-dataacq.html
http://life.bio.sunysb.edu/morph/soft-dataacq.html
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Figure 1. Location of Strečno mountain pass in European context and a close-up of the collection site 
on a historic map from 1955.

cording to the SHMI, saw the lowest monthly temperature ever recorded for the loca-
tion during the measured period 1944–2019. The heavy rainfall and flooding in 1958 
can also be supported by the collected data. Based on this information we selected the 
low monthly February 1956 temperatures and 1958 heavy rainfalls and flooding as the 
two most important ECEs during our research period.

Data on the anthropic impact and road construction timeline was pieced together 
from articles and archives by The News Agency of the Slovak Republic (TASR), using 
mostly contemporary photographs with descriptions.

Statistics

Statistics were conducted separately for the fore and hindwing to rule out the possible 
misalignment of wings during preparation (Bookstein 1997; Alibert and Auffray 2002). 
Using the MorphoJ software (Klingenberg 2008) a Procrustes superimposition was con-
ducted following 3 steps for fitting the landmarks: (1) scaling the landmarks to the same 
centroid size (hereinafter “size”); (2) shifting the landmarks to the same position and (3) 
rotating them to fit the orientation as closely as possible minimizing the sum of squared 
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Figure 2. Left fore and hindwing of P. apollo used for the morphometric analysis, including the mor-
phometric landmarks Forewing: 1 – R4 and R5 intersection, 2 – R4 terminally, 3 –R5 terminally, 4 –M2 
terminally, 5 –M3 terminally, 6 –Cu1 terminally, 7 –Cu2 terminally, 8 –A2 terminally, 9 – Discal cell and 
Cu1 intersection, 10 – Discal cell and Cu2 intersection. Hindwing: 11 –Rs terminally, 12 – M1 termi-
nally, 13 – M2 terminally, 14 – M3 terminally, 15 – Cu1 terminally, 16 – Discal cell and M1 intersection, 
17 – Discal cell and Rs intersection.

distances of landmarks (Klingenberg 2015). Procrustes ANOVA in MorphoJ was used 
to determine the morphological variance found among individuals when comparing 
the left and right wing. The same method was used to compare the left and right wing 
within each individual to test if there is a significant deviation from bilateral symmetry 
of our selected landmarks (Klingenberg and McIntyre 1998). The deviation to bilateral 
symmetry across the temporal variable is further referenced as FA (fluctuating asymetry). 
Procrustes residuals were used for canonical variate analysis (CVA) to test for differences 
between years using MorphoJ and PAST software (version 3.20) (Hammer et al. 2001). 
A scatterplot produced within the MorphoJ environment was created to display the 
comparison of the morphological changes. Boxplots of the FA, CV1 and CV2 scores 
were generated in the R software (version 3.4.4), using RStudio (version 1.1.456) (RStu-
dio Team 2015). To compare the variance of morphology between years and between 
artificially created pre- and post- 1960 datasets a factorial analysis was conducted using 
the “aov” function in R. Also, a breakpoint factorial analysis using “segmented” package 
was conducted to test the observed change on the morphology (RStudio Team 2015).
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Results

All 506 Parnassius apollo specimens (Tab. 1), including 342 males and 164 females, 
used for this analysis were checked for strength of measurement and digitization error, 
with negligible results when compared to the morphological changes. In accordance 
with no significant size, shape or fluctuating asymmetry differences of hind or fore-
wings between sexes (Tab. 2), the specimens were pooled together for further analyses.

Table 1. A survey of the collected specimens.

Collection year Collection period Female Male Total
1938 15.6.–20.7. 10 16 26
1939 15.6.–20.7. 0 18 18
1940 15.6.–20.7. 9 10 19
1941 15.6.–20.7. 8 17 25
1942 15.6.–20.7. 9 16 25
1943 22.6.–20.7. 7 21 28
1946 22.6.–20.7. 8 15 23
1948 22.6.–20.7. 8 11 19
1950 22.6.–20.7. 9 11 20
1951 22.6.–20.7. 7 10 17
1953 25.6.–24.7. 10 15 25
1954 25.6.–24.7. 0 15 15
1956 25.6.–24.7. 0 13 13
1957 25.6.–24.7. 5 16 21
1958 25.6.–24.7. 3 10 13
1960 25.6.–24.7. 5 14 19
1961 25.6.–24.7. 4 4 8
1963 25.6.–24.7. 7 6 13
1965 25.6.–24.7. 52 86 138
1966 25.6.–24.7. 1 9 10
1968 25.6.–24.7. 2 9 11
Total 164 342 506

Table 2. ANOVA of shape, centroid size and fluctuating asymetry scores between males and females.

Forewing
Df Sum sq Mean sq F value p

Shape
1 0.000142379 0.000142379 1.238 0.2664
centroid size
1 0.00129255 0.00129255 0.6782 0.4106
fluctuating asymetry (FA)
1 0.0000686794 0.0000686794 1.446 0.2297
hindwing – – – –
Shape
1 0.000221659 0.000221659 2.233 0.1357
centroid size
1 0.0000453208 0.0000453208 1.439 0.2308
fluctuating asymetry
1 0.0000592967 0.0000592967 0.8129 0.3677
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Testing for digitization error by photographing 50 individuals under the same 
light conditions and digitization setup, no significant difference in landmark place-
ment was detected (ANOVA, digitization error of forewing p = 0.76, hindwing p = 
0.56). The same result of non-significant difference was recorded for the measurement 
error, remeasuring all 506 individuals twice (ANOVA, measurement error of forewing 
p = 0.59, hindwing p = 0.45).

Fluctuating asymmetry (FA) throughout time

Rejecting the null hypothesis using Procrustes ANOVA (p < 0.0001) for the fore and 
hindwing corresponds with statistically significant levels in wing asymmetry within 
each year measured. As there was no significant variance in asymetry throughout the 
years for the forewing (ANOVA, p = 0.417) as well as the hindwing (ANOVA, p = 
0.0564), the asymmetry is statistically significant within each year, although with no 
fluctuation when comparing the time series.

Wing shape change patterns

The Mann-Whitney’s pairwise comparison, to test the significance of the differences 
in wing shape between each year of the time series (Appendix 1), and the Canonical 
variate analysis (CVA) show a significant change in the wing morphology starting with 
1960 for the forewing and 1961 for the hindwing, continuing until the end of our 
dataset. Canonical variate 1 (CV1) and 2 (CV2) (Figs 3–6) describes 81% (for the 
forewing) and 76% (for the hindwing) of the total variance in wing morphology.

The shift observed starting in 1960 was tested using 2 factor analysis of vari-
ance where we tested the artificial pre/post 1960 datasets and the natural variation 

Figures 3, 4. Mountain Apollo forewing shape changes displayed on the canonical variate 1 and 2. The 
boxplots cover the upper and lower 25%, separated by a line showing median inside the box, whiskers cov-
er remaining upper and lower 25%, the white circles represent outliers and black stars are extreme values.

3 4
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Figures 5, 6. Mountain Apollo hindwing shape changes displayed on the canonical variate 1 and 2. The 
boxplots cover the upper and lower 25%, separated by a line showing median inside the box, whiskers cov-
er remaining upper and lower 25%, the white circles represent outliers and black stars are extreme values.

5 6

between years using CV1 (Tab. 3). To measure the shift in morphology observed in 
Figs 3–6 a breakpoint regression analysis was tested on CV 1 of the fore- and hind-
wing (Figs 7, 8).

Wing shape dynamics pre/post 1960

Due to the results of the Mann-Whitney’s pairwise comparison (Appendix 1) and the 
CVA, observing a significant change in the wing morphology after 1960 (1961) we 
pooled the dataset into two groups (1938 – 1958 with 307 individuals and 1960 – 
1968 with 199 individuals) to mitigate the possibility of a bias due to low numbers 
of individuals collected in some of the years. The scatter plots (Figs 9, 10) display the 

Figures 7, 8. Breakpoint regression analysis of the CV1 for the fore- and hind wing displaying the esti-
mated breakpoint of the forewing CV1 in 1960 (se = 0.0058, Pr(>F) = 6.42×10-8) and for the hindwing 
in 1960 (se = 0.0051, Pr(>F) = 0.00511).
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1938 - 1958
1960 - 1968

forewing

Figure 9. Scatter plot of the P. apollo forewing shape change along the first two canonical variates as axes. 
CV1 and CV2 cumulatively displaying 81.12% of the variability with 80% confidence ellipses.

1938 - 1958
1960 - 1968

hindwing

Figure 10. Scatter plot of the P. apollo hindwing shape change along the first two canonical variates as 
axes. CV1 and CV2 cumulatively displaying 76.39% of the variability with 80% confidence ellipses.

Table 3. Canonical variate 1 (CV1) used in the analysis of variance for comparison of natural variance in 
wing morphology between years and the shift observed around 1960.

Df Sum sq Mean sq F value Pr(>F)
CV1 forewing pre vs post 1960 1 381.9 381.9 381.922 < 2 x 10-16 ***

Years 19 60.7 3.2 3.194 4.81 x 10-6 ***
Residuals 989 989 1

CV1 hindwing pre vs post 1960 1 117.6 117.6 117.601 < 2 x 10-16 ***
Years 19 64.8 3.41 3.412 1.14 x 10-6 ***

Residuals 993 993 1

same pattern of statistically significant (<0.0001; P = 0.05) changes in morphology 
after being pooled.

The scatter plots of CV1 and CV2 are displaying a shift from a narrower to broader 
forewing, with more extremes in either extra broad or narrow forewings in individuals 
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from the 1960 – 1968 group (Fig. 9). The apex of the forewing is getting narrower and 
the landmarks M2 (4) and Cu2 (7) are moving closer along the time series.

For the hindwing (Fig. 10) the CV2 refers to a shift of the wing from broad to nar-
row along the Y axis. There is no general direction of hindwing landmark dynamics for 
CV1 and the movement on the hindwing is strongest at the M3 (14) and Cu1 (15), 
with an inwards landmark movement along the time series.

Weather and wing morphology correlation

Generally, the comparative statistics of temperature, precipitation and morphology 
of individuals and their FA showed no distinct correlation (r2 < 0. 04). The strongest 
correlation r2 = 0. 25 (forewing) and r2 = 0.30 (hindwing) of standard deviation of the 
centroid wing size to the average monthly temperature was observed during February. 
The other positive correlation refers to January temperature vs. wing size (r2 = 0.21 for 
forewing, r2 = 0.175 for hindwing) and March temperature vs. wing size (r2 = 0.18 for 
forewing, r2 = 0.16 for hindwing).

Extreme climatic events

Using historical weather data (temperature and precipitation) and photographic docu-
mentation of ECEs, we identified two extreme weather events (ECE) and compared 
them with the morphometric data (symmetric and asymmetric components, centroid 
size and Procrustes FA scores). The first ECE (a deep drop in monthly temperature 
during February 1956: -11.5 °C) corresponds with no deviation from the average wing 
size despite the extremely cold weather, as the wing size parameter lies within the range 
of the dataset (Figs 11, 12).

Similarly, the extreme weather event, in this case heavy rainfall in June 1958, 
does not show any correlation to wing morphology (R2 < 0.02), when comparing the 
daily, monthly, or annual precipitation total sum, average, min or max values at the 
study site. A weak positive correlation (R2 = 0.12) was found for standard deviation 

11 12

Figures 11, 12. The correlation of the Centroid size standard deviation of the P. apollo fore and hindwing 
to the average temperature in February (the extreme weather event highlighted with a green circle).
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13 14

Figures 13, 14. The correlation of monthly sd of precipitation to Centroid size of the P. apollo fore and 
hindwing (the extreme weather event highlighted with a green circle).

of monthly precipitation to the wing size, when the wings grew larger with increasing 
variation of monthly precipitation. (Figs 13, 14).

Environmental impact

Since the changes in wing morphology show only weak correlations to temperature 
or precipitation, there is a strong suggestion of high anthropic effect. A large-scale 
road development project in November 1959 with heavy modification or complete 
destruction of some of the cliff faces was conducted in the immediate proximity of the 
collection site when constructing a new concrete road at Strečno castle, the Domašín 
meander and Žilina (Fig. 15A–C). The construction works were underway until at 
least 1965 and in 1964 heavy traffic was reported for the location.

Discussion

The Mann-Whitney’s pairwise comparison and the Canonical variate analysis (CVA) 
revealed a significant change in wing morphology starting between 1958 and 1960, 

Figure 15A–C. Extensive construction works at the collection site, November 1959 (Kocián, 1959a, b, c).

A B C
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continuing to the end of the dataset. This is supported by the analysis of variance 
and the breakpoint regression analysis. The fluctuating asymmetry was statistically sig-
nificant in all tested years, however with no significant changes over the period of 30 
years, proving previous results and the hypothesis that P. apollo populations are able to 
maintain low long-term effective populations despite the high but constant amounts 
of asymmetry (Habel et al. 2009, 2012).

In principle, any external factor can produce plastic responses in organisms with 
the most prominent factors being temperature, photoperiod and humidity, where a 
single population can display annual or even seasonal variation (Blanckenhorn 2009). 
However, the analysis of the interaction of temperature and precipitation with mor-
phology showed only weak or no distinct correlations. The first ECE (a deep drop in 
monthly temperature during February 1956) corresponds with no deviation from the 
average wing size despite the extremely cold weather, as the wing size parameter lies 
within the range of the dataset. February may be of high importance in the ontogeny 
of P. apollo as the eggs usually hatch at the end of February and the beginning of March 
(Žltková and Havranová 2017). Lower temperatures generally show positive effects on 
the overwintering eggs, although the overwintering larvae may be threatened by sud-
den temperature increases (Radchuk et al. 2013). Interestingly, Yu et al. (2012) found 
higher winter temperatures, especially in February, to have the highest negative cor-
relation coefficient for the numbers of collected mountain Apollo specimens. Although 
our data does not show such a relationship, the wing size does correlate with the aver-
age monthly temperatures in February.

The second ECE with high short-term precipitation had little to no impact on the 
mountain Apollo populations at the study site; however we hypothesize that the ab-
normal rainfall may have had a negative impact on adults, pupas as well as host plants 
(McDermott Long et al. 2017). Although we do not reject the possibility of the ECEs’ 
impact on wing morphology, the available meteorological data suggest only weak or no 
correlations to changes in pre/post 1960 datasets, therefore a different effect had to be 
considered when evaluating impact on wing morphology.

A road development in a complicated terrain of an incised meander of the Strečno 
mountain pass was carried out from 1959 to 1965. The populations of mountain 
Apollo were present along the cliff faces and the surrounding meadows, creating ideal 
conditions with all the essential properties present for this species. We hypothesize that 
the removal of large parts of cliff faces which were used for the leveling of the road and 
the use of the open meadows for storage of material or by movement of the construc-
tion machinery changed the habitat and reduced the number of habitable patches that 
the population can occupy and limited the resources at the location (Blake et al. 1994; 
Brommer and Fred 1999; Fred et al. 2006). If we consider that even positive attempts 
to restore the habitats can change the morphology of butterflies by indirectly altering 
the host plant presence or quality (Sivakoff et al. 2016), the road work must be con-
sidered a major factor. Direct and indirect alteration or complete destruction of the 
habitats during the construction phase had most likely an impact on the morphology 
of the mountain Apollo butterflies, although the complex and often subtle morpho-
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logical changes do not allow us to hypothesize further regarding the possible outcomes 
to the foraging behavior or overall fitness of the affected populations.

A more subtle, but lasting effect of the newly built road was a reported increase 
in the numbers of vehicles at the location. Since the morphological changes of the 
wings were observable until the end of our dataset in 1968 we here hypothesize that 
the newly built road could have continually affected the mountain Apollo and their 
host and nectar plants (Bengtsson et al. 1989; Trombulak and Frissell 2000; Muñoz et 
al. 2015), until the butterfly completely disappeared from this location in the 1990s.

Due to its conservation status and the vulnerability of current populations of 
mountain Apollos, the historic collections often provide the only and possibly the last 
opportunity to analyze large numbers of these individuals. The populations collected 
by Ján Zelný at Strečno mountain pass were gathered in such numbers due to the at-
tempts of discovering a new subspecies based on the wing color patterns, where the 
method of collection was to gather the largest number of individuals during each visit. 
In most cases the selective nature of the amateur collectors could include a bias by 
selecting the largest or subjectively most beautiful specimens. Due to the nonselective 
nature of the collection method used by Zelný and the fact that he was the only person 
collecting and mounting the specimens we concluded that even if he had a specific 
preference in collection of butterflies the bias is the same in all collected populations. 
The statistical analysis of environmental effects on the wing morphology of the 506 
individuals of P. apollo from a single location, collected periodically almost at the same 
time in June and July, over 30 years creates a unique look into a historical population 
of Parnassius apollo no longer present at the location.

Conclusion

The asymmetry of wings did not significantly change over time, nor could it be cor-
related to the analyzed environmental factors. Only weak or no statistical correlation 
with the meteorological data within the analyzed timeseries was detected. There is a 
strong suggestion of anthropogenic impact due to road construction on the changes in 
wing morphology at the studied site.
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