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Abstract
The aim of the present study was to predict future changes in biodiversity attributes (richness, rarity, 
heterogeneity, evenness, functional diversity and taxonomic diversity) of freshwater fish species in river 
basins around the world, under different climate scenarios. To do this, we use a new methodological ap-
proach implemented within the ModestR software (NOO3D) which allows estimating simple species 
distribution predictions for future climatic scenarios. Data from 16,825 freshwater fish species were used, 
representing a total of 1,464,232 occurrence records. WorldClim 1.4 variables representing average cli-
mate variables for the 1960–1990 period, together with elevation measurements, were used as predictors 
in these distribution models, as well as in the selection of the most important variables that account for 
species distribution changes in two scenarios (Representative Concentration Pathways 4.5 and 6.0). The 
predictions produced suggest the extinction of almost half of current freshwater fish species in the coming 
decades, with a pronounced decline in tropical regions and a greater extinction likelihood for species with 
smaller body size and/or limited geographical ranges.
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introduction

Predicting the consequences of climate change on organisms’ geographical distribution 
and, consequently, on their biodiversity, is a complex and monumental task, but one 
which is necessary (Warren et al. 2018). A simplistic, but common, approach to achieve 
this aim has been the creation of so-called Species Distribution Models (SDMs). SDMs 
relate a dataset of species occurrences with the environmental characteristics of the areas 
in which these occurrences are observed, so as to derive predictions for various climatic 
scenarios. SDMs, however, can also be used to derive projections for other types of 
global change such as land-use or human density, so they are not restricted to climate 
change. SDMs may thus be considered forecasting models, in which prediction reli-
ability is highly dependent on the quality of the data employed and the strength of the 
relationship between global change and species distributions. Unfortunately, when the 
outputs of these correlational models are evaluated using occurrence data from a differ-
ent period, whether it be for hindcasting or forecasting, the results obtained are often 
unsatisfactory (Kharouba et al. 2009; Rubidge et al. 2011; Rapacciuolo et al. 2012; 
Eskildsen et al. 2013; Ko et al. 2013; Watling et al. 2013). The inability to correctly 
forecast the future distribution of species under other climatic scenarios is likely not 
only due to our lack of species-specific knowledge of the effects of the explanatory vari-
ables, but also due to certain characteristics of the modelling procedures used. SDMs 
require the inclusion of non-climatic variable predictors, which also influence species 
distributions; and it should also be considered that the general lack of adequate survey 
effort precludes the use of reliable absence data. These two major shortcomings hinder 
the estimation of the ‘true’ causal influence of climatic variables (Lobo 2016).

Freshwater fish appear to be a group which is especially vulnerable to climatic changes 
(Markovic et al. 2017) and at high risk of extinction (Collen et al. 2014) under predicted 
changes in hydrological regimes and warming climate. Freshwater fish have already expe-
rienced important shifts and changes in their distributions in response to recent climatic 
changes (Comte and Grenouillet 2013), which have dramatically affected riverine fish 
assemblage composition (Conti et al. 2015). SDMs have often been used to estimate the 
effect of climate change on freshwater fish species. However, the majority of studies have 
mostly been focused on species that populate cold-water habitats in temperate North 
American and European regions (Hauer et al. 1997; Comte et al. 2013; Filipe et al. 2013; 
Edwards et al. 2016; Ruiz-Navarro et al. 2016; Radinger et al. 2017). Consequently, 
there is an extreme geographical bias in these studies and very limited information is 
available on the potential responses of freshwater fish species inhabiting the southern 
hemisphere or the tropics (see Pelayo-Villamil et al. 2018). There have been papers pub-
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lished on research at country-wide or continental scales (Booth et al. 2011; Markovic et 
al. 2012; Comte and Olden 2017; Markovic et al. 2017; Jarić et al. 2019). However, to 
date, no study has attempted to estimate the potential effects of future climate changes 
on freshwater fish at a global scale. In this approach, we consider a fundamentally holistic 
approach to studying many species at a global scale, in order to better understand the 
possible effects of climate change, rather than relying on the single species studies that 
have dominated the field of freshwater species research to date (Gallo et al. 2017).

The present study is not characterised by the use of complex algorithms with un-
reliable absence data; instead, we make use of the unique empirical data frequently 
available (occurrence observations) to infer the environmental conditions under which 
particular species seem to be able to maintain sustainable populations. This informa-
tion was subsequently used to transfer spatial data on these suitable environmental 
conditions to potential future climatic scenarios. The purpose of this study, therefore, 
is to map the future location of the climatic conditions under which freshwater fish 
species are currently observed, assuming the general incapacity of freshwater fish spe-
cies to colonise new river basins (Drakou et al. 2009) and obviating the role played 
by micro-evolutionary processes and phenotypic plasticity. Thus, the main aim of this 
study was to provide a general assessment of the most likely changes in freshwater fish 
species richness, diversity and body size in world watersheds, as well as to estimate the 
most plausible modifications in the distributional area of these species.

Material and methods

Occurrence records of freshwater fish

The dataset of geographical records for freshwater fish, developed by Pelayo-Villamil 
et al. (2015), was updated to reflect the taxonomic changes and new species described 
up to the end of October 2018. Appendix 1 in Suppl. material 1 describes all sources 
obtained from the Global Biodiversity Information Facility (GBIF; see https://www.
gbif.org/), which were used in this study, in detail. Other sources, such as web pages, 
museum collections and published manuscripts are described by Pelayo-Villamil et 
al. (2015). Records were downloaded and filtered using the data cleaning capabilities 
available in the ModestR software (Pelayo-Villamil et al. 2012; García-Roselló et al. 
2013, 2014, 2015). GBIF records were filtered as follows: i) records with the same 
latitude and longitude were excluded, ii) records with 0° latitude or longitude were 
also excluded and iii) habitat data were cleaned, in order to eliminate occurrences 
in habitats other than those corresponding to terrestrial freshwater ecosystems (see 
García-Roselló et al. 2014 for details). At the end of October 2018, 16,825 species 
of freshwater fish were recognised as valid by taxonomists and are available at IPez 
(http://www.ipez.es, Guisande et al. 2010). Of these, 16,662 species (99.6% of the 
total) had associated geographical information, for a total of 1,464,232 occurrence 
records (unduplicated). See Suppl. material 2: Table S1 for a detailed description of the 

https://www.gbif.org/
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species included in the analysis, as well as future species predictions in 2050 and 2070 
under both scenarios and the maximum body length of each species, all of which were 
obtained from https://www.fishbase.org/ or from the original manuscripts, when not 
available at FishBase.

Biological species traits to measure functional diversity

We used the classification described by Buisson et al. (2013), slightly modified, for 
functional description of the fish species. We used six traits divided into three bio-
logical functions: food acquisition, life habitat and locomotion. Food acquisition traits 
include the feeding habitat (pelagic, benthopelagic and benthic) and the trophic guild 
(primary consumer, secondary consumer, top-predator, omnivorous and detritivo-
rous). Life habitat traits comprise habitat type (pelagic, benthopelagic and demersal) 
and migration type (potamodromous, anadromous, catadromous, amphidromous, 
oceanodromous and no migration). Finally, locomotion traits include body length (in 
cm: small < 15, medium 15–50, large 50–150 and extra-large > 150) and rheophily 
(rheophilic, limnophilic and eurytopic). The biological traits assigned to each species 
are available in Appendix 2 of Suppl. material 3. This information was obtained from 
https://www.fishbase.org/ or from the original manuscripts, when not available at Fish-
Base (Froese and Pauly 2019).

It was not possible to include reproduction traits, such as life span, parental care 
or reproduction habitat, because of the difficulties inherent in the assignment of these 
functional traits to over 16,000 species.

Predicting future species distributions

The future distribution of species was estimated by a modelling procedure (NOO3D) 
available in the ModestR software (Pérez-Costas et al. 2019), which is based on a 
simple method called Niche of Occurrence (NOO; García-Roselló et al. 2013, 2014, 
2019). NOO3D can be used both to estimate the 3D distribution of species using 
3D occurrence samples and 3D environmental datasets (e.g. at different depths) and 
to extrapolate the probable distribution of a species at different time slices taking into 
account the occurrences available in one or more time periods. A full description of 
this procedure is provided in Suppl. material 4 (Appendix 3) and there is a step-by-step 
tutorial freely available at http://www.ipez.es/modestr/Manual_Tutorial.html (see also 
García-Roselló et al. 2019 and Pérez-Costas et al. 2019).

In essence, both NOO and NOO3D aim to overcome the drawbacks associated 
with the general lack of reliable absence information (Lobo et al. 2018), as well as the 
frequent use of arbitrary geographical extents (Acevedo et al. 2017). The procedure 
firstly delimits the Extent of Occurrence or the accessible area for each species using a 
convex hull, an α-shape or a Kernel density distribution. In this study, three separate 
delimitation methods were used to determine the accessible area, which included differ-
ent α values, in the case of α-shapes and several smoothing values, in the case of Kernel 

https://www.fishbase.org/
https://www.fishbase.org/
http://www.ipez.es/modestr/Manual_Tutorial.html
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densities. Subsequently, the 19 bioclimatic variables of the WorldClim 1.4 database 
representing average climate data for the 1960–1990 period (www.worldclim.org; Hi-
jmans et al. 2005) were used in ModestR to estimate the environmental values of the 
occurrence records. Future bioclimatic data of the RCP 4.5 and RCP 6.0 Representative 
Concentration Pathways (RCPs) coming from the same source were also used. We did 
not include other important variables in our analysis, such as catchment area, connec-
tivity with other catchments, intensity of human activities etc., due to the worldwide 
scale of this study and the well-known relevance of climate variables in explaining large-
scale species distributions (Pearson and Dawson 2003). From the available bioclimatic 
variables, only those that best explained the distribution of freshwater fish species were 
used (Manjarrés-Hernández et al. 2018); those with a Variance Inflation Factor (VIF) 
of less than 20 were selected. The VIF quantified the multicollinearity of predictors 
(Guisande et al. 2011) and, in this case, the VIF value was selected by deleting those 
variables which displayed the most severe multicollinearity because we are only interest-
ed in estimating the explanatory capacity of each predictor. Consequently, the following 
10 bioclimatic variables were finally selected: annual mean temperature (BIO1), mean 
diurnal range (BIO2), isothermality (BIO3), temperature seasonality (BIO4), mean 
temperature of the wettest quarter (BIO8), annual precipitation (BIO12), precipitation 
of the driest month (BIO14), precipitation seasonality (BIO15), precipitation during 
the warmest quarter (BIO18) and precipitation during the coldest quarter (BIO19). 
Elevation was also included as a predictor because it seems to be a temporary, invariable, 
but important factor affecting the distribution of freshwater fish (Manjarrés-Hernández 
et al. 2018). Appendix 3 in Suppl. material 4 details the procedure followed to include 
the WorldClim 1.4 database as a 3D set of variables in the ModestR software. All these 
variables were handled at a resolution of 5´ × 5´.

Subsequently, the relevance of these environmental variables to explain the distri-
bution of each one of the species was estimated by using the Instability Index described 
by Guisande et al. (2017a) and Guisande (2018b) that does not require normalised 
data. Dividing each predictor into a number of intervals or bins determined by the 
user, the number of records in each bin was calculated considering separately the cells 
where the species occurs and those of the selected studied area. A peak of instability is 
observed when there are important differences in the predictor comparing the bins of 
presence with the corresponding ones of the study area. This index outperforms other 
methods proposed to identify the most appropriate environmental factors (Guisande 
et al. 2017a; Fan et al. 2018). The explanatory variables with the highest percentage 
contributions to the Instability Index would be those that most affect the distribution 
of the species in the accessible area. In order to include only those variables with a 
higher contribution, it is possible to select an accumulated percentage of contribution 
(the default option is 80%) so that, if 100% is selected, all variables will be included. It 
is important to highlight the fact that the software identifies the most important vari-
ables for each species and that these variables may vary between species.

Once the most important environmental variables which affect the distribution 
of each species in their accessible area were identified, all cells with environmental 
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conditions similar to those existing in the occurrence localities were delimited, thus 
predicting the changes in species diversity in the years 2050 and 2070, under the RCP 
4.5 and RCP 6.0 climate scenarios. The most appropriate model outputs to be applied 
in NOO3D were selected by comparing estimated river basin species richness with the 
results of accumulation curves derived from occurrence records (Lobo et al. 2018). This 
entire process was automatically implemented in ModestR (see Suppl. Material 4).

Pelayo-Villamil et al. (2018) demonstrated that over 71% of countries worldwide 
have inventories of freshwater fish species that may be categorised as of poor quality. 
Furthermore, even those countries with relatively accurate reliable national inventories 
possess high degrees of variability in the completeness of their provincial or regional in-
ventories. Therefore, species richness in river basins is doubtlessly underestimated when 
the raw geographical occurrence data are used. Species richness of freshwater fish in each 
river basin, then, was approximated with the RWizard (Guisande et al. 2014) applica-
tion, KnowBR (Lobo et al. 2018; www.ipez.es/RWizard), also available as an R package 
on CRAN (Guisande and Lobo 2018). This application enables the use of informa-
tion, which originates from exhaustive database records, to build species accumulation 
curves that describe the relationship between the accumulated number of species and a 
surrogate survey effort for different spatial units (such as cells, countries or river basins, 
as is the case here) simultaneously. These accumulation curves are adjusted to different 
asymptotic or quasi-asymptotic functions, in order to estimate the predicted number 
of species when the survey effort tends toward the infinite (Clench 1979; Soberón and 
Llorente 1993; Hortal and Lobo 2005). The default exact estimator was utilised to 
derive the accumulation curve and the Clench function applied for curve adjustment 
in order to estimate the potential number of species when the number of records tends 
toward the infinite. Occurrence records in level-two river basins (González-Vilas et al. 
2016), which are available in ModestR (García-Roselló et al. 2013), were used as target 
spatial units. The species richness estimations obtained from KnowBR were considered 
to be the most probable species richness values present in the river basins and were sub-
sequently compared to the species richness figures obtained after overlaying the outputs 
of the individual species models created by the aforementioned modelling procedure.

The final consequence of all this process is a geographic representation of each spe-
cies’ distribution area both for present and future scenarios, taking into account the cli-
matic conditions of the observed occurrences. In this manner, the most probable future 
distribution of each species was estimated according to the information derived from 
current occurrences and in accordance with the values of the environmental variables 
in potential future scenarios (see García-Roselló et al. 2019). For those species with few 
records, for which it was not possible to estimate the probable distribution following 
the formerly mentioned procedure, the ModestR software was used to verify whether 
the current environmental conditions where the species is present will be available 
under future scenarios. In the case that the current environmental conditions in which 
the species are present were unavailable under future scenarios, the species was con-
sidered to be locally extirpated. We must emphasise that the performance of NOO3D 
relies on two fundamental assumptions: i) that current geographical occurrences can 



Freshwater fish diversity scenarios 7

infer suitable environmental conditions for each species, at least partially and ii) that 
these environmental conditions are the main drivers of species distribution or act as 
surrogates for the true causal variables. Presence is very frequently the only available 
empirical evidence that provides an image of the environmental conditions in which 
each species is able to maintain sustainable populations. Hence, transfer to other tem-
poral scenarios in the climatic or environmental ranges obtained from observed occur-
rences must be considered provisional map representations, which are highly depend-
ent on their capacity to colonise distant, but suitable, localities. Therefore, our study 
strives to describe the future location of areas which are accessible to the considered 
species and which will have climatic conditions similar to those in which the species 
is observed in the present day (Lobo 2016), while excluding the role played by micro-
evolutionary adaptations.

River basins as spatial units for the estimation of diversity

The geospatial data for river basins imported into ModestR was obtained from the 
WaterBase project website (http://www.waterbase.org). WaterBase global river basin 
data were taken from the drainage basin dataset distributed with HYDRO1k, a hydro-
logical database developed by the EROS Data Center of the U.S. Geological Survey 
(USGS). This database provides a collection of global geo-referenced layers at a 1 km 
resolution derived from GTOPO30, a 30 arc-second digital elevation model (DEM) 
of the world. The drainage basins dataset from HYDRO1k was projected on to lati-
tude/longitude geographical coordinates. Vertices were smoothed by applying a 500 m 
threshold in order to generate the ESRI Shape files available via the WaterBase website.

The river basins dataset was originally obtained by combining flow accumulation 
and flow direction layers, which were, in turn, derived from the hydrologically-cor-
rected DEM, based on the GTOPO30 dataset. The basins were organised according 
to the procedure first proposed by Pfafstetter (1989) and later adapted for use in the 
HYDRO1k dataset (Verdin and Greenlee 1998). River basins were divided into six 
levels and each sub-basin was identified using a unique Pfafstetter code, (i.e. a six-digit 
code with information about the interconnections of the basins).

We used level-two of the river basins data set (González-Vilas et al. 2016) as the 
spatial unit for the estimation of the diversity, because this level is the geographical 
extent that best illustrates the effect of environmental parameters on the distribution 
of freshwater fish species (Manjarrés-Hernández et al. 2018).

Diversity indices and statistical analysis

For each river basin, both in present and in future projections (2050 and 2070), 
according to the results obtained for the RCP 4.5 and RCP 6.0 scenarios, several diversity 
indices were estimated. The DER function from the R package EcoIndR (Guisande et 
al. 2017b; Guisande 2018a) is used for this purpose, which allows the calculation of 31 
different indices for each river basin belonging to five categories: rarity (two indices), 

http://www.waterbase.org
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heterogeneity (14 indices), evenness (seven indices), taxonomic diversity (two indices) 
and functional diversity (six indices; see table 1 in Guisande et al. 2017b). Since there is 
no index universally applicable to all ecological assemblages (Magurran 2004), the DER 
algorithm was also employed for the selection of the diversity indices that best showed 
the differences between river basins. Therefore, from all of the estimated indices, only 
one of each of category was chosen.

All statistical analyses were run with the RWizard application StatR (Guisande 
et al. 2014). Stepwise multiple regressions were performed with the stats R package 
(R Development Core Team 2018). A backward-forward approach, based on Akaike 
Information Criterion (AIC), was used to select the most parsimonious model. The 
relative contribution of each variable in the regressions was estimated with the LMG 
method (the r2 contribution averaged over orderings amongst regressors) with the R 
relaimpo package (Grömping 2006, 2018). The dwtest function from the lmtest pack-
age was utilised (Hothorn et al. 2018) to estimate autocorrelation with the Durbin-
Watson statistic (Durbin and Watson 1951).

results

As expected, the regression slope between river basin species richness, estimated with 
accumulation curves and observed species richness, obtained from records (Fig. 1, red 
line) is significantly lower than one (ANCOVA, P < 0.001), with a value of 0.81. This 
means that river basin species richness is underestimated when using the available raw 
data and that the under-prediction is greater when basin species richness is high. This 
is likely due to the poor quality of existing inventories in many countries, especially 
in tropical areas which host a higher number of species (Pelayo-Villamil et al. 2018).

Amongst all of the procedures used to select the accessible area in the modelling 
procedures (convex hull, alpha shape with different α values, Kernel density with dif-
ferent smoothing values etc.), the model displaying the best fit when compared with 
the species richness estimated from accumulation curves was generated with a Kernel 
density estimator using a smoothing value of two. The intercept of this relationship was 
not significantly different from zero (ANCOVA, P = 0.292) and the slope was not sig-
nificantly different from one (ANCOVA, P = 0.512) with a value of 0.99 (Fig. 1, blue 
line). As a result, the species richness data predicted with the kernel density estimator 
were selected to be imported into the temporal transfer modelling procedure, because 
the species richness was quite similar to that obtained from the accumulation curves.

The decline in species richness was very similar between scenarios RCP 4.5 and 
RCP 6.0. These models predicted the complete disappearance of the distributional 
areas of half of all freshwater fish species (from 45.3% to 46.7%, independent of the 
year or the climatic scenario). As an example of the predicted decline, Fig. 2 shows the 
predicted change in species richness in the year 2070, under the RCP 4.5 scenario. 
This decline was more pronounced in tropical river basins and was particularly high in 
Vietnam and south-eastern China (Fig. 2).



Freshwater fish diversity scenarios 9

Figure 1. Relationships between the species richness in level-two river basins predicted by accumulation 
curves (abcissa), using the KnowBR package and those obtained with occurrence records (red) and after ap-
plying the proposed model approach with a Kernel density (smoothing value of 2) (blue; ordinate). Green 
line shows the 1:1 fit.

Fig. 3 shows the significant explanatory variables obtained from stepwise multi-
ple regressions, considering the predicted change in species richness in the year 2070 
(RCP 4.5 scenario). All the considered explanatory variables aggregated are able to 
explain 54% of the variance in the obtained species richness without showing a strong 
spatial autocorrelation (Durbin-Watson statistic 1.87, P = 0.047). The variable with 
the highest contribution was BIO12 (annual precipitation), so that species richness de-
cline at higher rates in those river basins that currently have high annual precipitation 
values. The second variable in importance was isothermality in river basins (BIO3). 
Isothermality is a measure of the annual temperature range experienced on a daily ba-
sis, such that the decline was higher where current river basin temperature seasonality 
is high (Fig. 3).

The values of the different diversity components (richness, rarity, heterogeneity, 
evenness, taxonomic diversity functional diversity) were very similar between the two 
scenarios (Fig. 4A). The ratio of species richness in the years 2050 and 2070, as compared 
to the present were 0.80 and 0.78, respectively (Fig. 4). In other words, on average, in all 
river basins, approximately 20% of species are to be lost. Rarity was also lower in 2050 
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Figure 2. Predictions of the changes in species richness in river basins (in numbers in the upper panel and 
in percentages in the lower panel), by the year 2070 under the RCP 4.5 scenario, as compared to current 
species richness. The river basins with grey backgrounds had no records, no species and/or distribution 
model estimation was impossible. High negative values represent basins with high species extinction rates.

(mean values of 0.975 for RCP 4.5 and 0.973 for RCP 6.0) and 2070 (mean values of 
0.973 for RCP 4.5 and 0.973 for RCP 6.0), as compared to the present (Fig. 4B), which 
means that the predicted species richness decline is partly due to the extinction of en-
demic or narrowly-distributed species. Heterogeneity was also lower in both years and in 
both scenarios, which displayed intermediate values for richness and evenness (Fig. 4C). 
This may be explained because heterogeneity is an index that combines the richness and 



Freshwater fish diversity scenarios 11

Figure 3. Relative contribution, with LMG method, of the significant climatic predictors obtained 
from a stepwise multiple regression, in which the dependent variable is the predicted change in spe-
cies richness from the present to the year 2070 (RCP 4.5 scenario). The explanatory variables were 
the minimum, maximum and mean values of the climatic WorldClim variables mentioned in the 
Material and methods section, which were averaged for each level-two river basin. Plots above the bars 
show the relationships between the dependent variable and each one of the statistically-significant 
independent variables.

Figure 4. Boxplots of the rate of change in richness, rarity, heterogeneity (Shannon-Wiener), evenness 
(Simpson evenness), taxonomic diversity (taxonomic distinctness) and functional diversity (functional 
richness) in each river basin, as predicted for the years 2050 (RCP 4.5 scenario) and 2070 (RCP 6.0 
scenario). A value less than 1 means that the Diversity Index is lower in the future scenarios than in the 
present and vice versa. Outliers are not shown in the boxplots. The numbers indicate median values for 
all river basins.
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Figure 5. Boxplot showing the extent of occurrence (EOO, in km2) of the species for each scenario and 
year. The numbers within each plot indicate mean EOO values for all species present in each scenario. The 
numbers of species predicted as present in each scenario are indicated in the x-axis. The category “Com-
pared.2000” is the mean EOO of the species in the present, but only considering those species predicted as 
present in the scenario with a higher number of species projected to be extinct (RCP 4.5 2070). Notched 
box plots show median values (horizontal line), interquartile range values between upper and lower quartiles 
(top and bottom of the box), distribution of 99% of data (upper and lower dashed lines) and notch lengths 
representing classic 95% confidence intervals. Note that, when notches do not overlap, medians may be 
seen to differ significantly (Krzywinski and Altman 2014) and that the difference between “Actual.2000” 
and “Compared.2000” scenarios is due to the predicted disappearance of species in the future.

the proportional abundance of species (Magurran 2004). Evenness, however, increased 
in 2050 and 2070, as compared to the present (Fig. 4D). Finally, the predicted species 
richness decline also led to a reduction in river basin taxonomic diversity and functional 
diversity (Figs 4E, F).

Fig. 5 shows further changes in the EOO estimated by the species distribution 
models for 2050 and 2070 in both scenarios. In addition to the above-mentioned loss 
of species with small geographical ranges, our results predict a general decrease in spe-
cies’ distributional ranges. When the median EOO of the species, for both scenarios, is 
compared to the median EOO from the present, it is clear that most species lose their 
suitable distribution area in the future (Fig. 5). These reductions in the suitable distri-
butional area were most pronounced in the tropical areas of South America and Africa 
(Fig. 6), whereas at medium latitudes (approximately between 10° and 50° both North 
and South), the mean EOO of the remaining species in river basins was higher (Fig. 
6). Interestingly, this remarkable reduction in the distribution area would be affecting 
mainly those species with a smaller body size (Fig. 7).
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Figure 6. Predictions of the change in the Extent of Occurrence (EOO, mean value of all species present 
in the river basin in km2) in river basins for the year 2070, with the RCP 4.5 scenario, as compared to the 
current species EOO. River basins with grey backgrounds had no records, no species and/or distribution 
model estimation was impossible.

Figure 7. Boxplots with the value of the maximum body length (in cm) of species for each scenario and 
year. Outliers are not shown in the boxplot. The numbers indicate the mean values for all species present 
in each scenario.
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Discussion

The comparison between the freshwater fish species richness scores, derived from ac-
cumulation curves and those generated by stacking individual SDMs, allowed the se-
lection of the most appropriate geographical extent or accessible area (Acevedo et al. 
2017), from which to derive predictions for the distribution of each species. Assuming 
that the congruence in the species richness estimations, provided by these two inde-
pendent methods, is an indication of the accuracy of the models applied, the future 
geographical representations of each species were then used to estimate the potential 
decline and variation in the distributional area of freshwater fish. It is not possible, 
however, to check whether there would be changes in species composition, because the 
accumulation curves only provide information on species richness.

The predictions, provided by this study, are similar to those suggested by Xenop-
oulos et al. (2005) for freshwater fish species. However, the results obtained by Tedesco 
et al. (2013) contrasted greatly with the often-alarming predictions regarding climate 
change-driven extinction for freshwater fish (Xenopoulos et al. 2005). Furthermore, 
Tedesco et al. (2013) suggest that conservation action should be directed towards the 
current anthropogenic threats that have spurred and continue to drive, freshwater fish 
biodiversity loss. Although the capacity to anticipate the effects of climate change on 
species distributions is plagued with uncertainties (Lobo 2016), we consider that our 
results are consistent in suggesting the probable trajectory of freshwater fish diversity at 
a global scale. Future predictions are often hampered by insufficient knowledge about 
the effects of microclimatic variations, phenotypic plasticity, microevolution and new 
biological interactions, which alleviate or limit the long-term effects of the predicted 
climatic changes (Hoffmann and Sgro 2011; Maclean et al. 2015; Merlin et al. 2018). 
This would mean that the loss of diversity would be lower than shown by our correla-
tive models. In our study, a high rate of species richness loss is predicted. We consider 
that this result may be partially explained by the wrong practice of extrapolating suit-
able areas beyond accessible river basins with current observed occurrences. Freshwater 
fish species are often poor dispersers (Shurin et al. 2009) and this dispersal constraint 
is supported by the general lack of capacity of freshwater fish species to track suitable 
climate conditions (Bush and Hoskins 2017; Comte and Grenouillet 2015) outside of 
their inhabited stream networks. This may be a consequence of river basin boundaries, 
which act as geographical barriers (Pelayo-Villamil et al. 2015). Thus, our previous se-
lection of the accessible area for each species and the limitation of future predictions to 
these areas seem to be especially appropriate for the provision of reasonable projections. 
Species Distribution Models extrapolations to other time periods show, in general, that 
these forecasting exercises have limited capacities (Araújo et al. 2005; Maguire et al. 
2016), probably as a consequence of the high number of non-climatic factors influenc-
ing species distribution and range limits (Ricklefs 2004). However, the capacity of pre-
dicting future species distribution should be higher when the ability of individuals to 
relocate is limited, as is the case of freshwater fish (Griffiths 2015). The vulnerability of 
freshwater fish communities to altered climatic patterns has been highlighted by their 
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isolation and fragmentation within river basins, where they act as biogeographic islands 
(Gozlan et al. 2010; Olden et al. 2011). In the case of freshwater fish, then, we suggest 
that forecasting their future spatial distribution could be facilitated by their dispersal 
limitations, obviating exceptions of biological invasions with human help.

The estimated predicted loss of species richness may also be attributed to the inclu-
sion of poorly-studied tropical areas, which support elevated levels of endemism. Such 
endemic species may be less likely to adapt to climate change (Thieme et al. 2010). 
Recent findings indicate that freshwater fish species from lower latitudes and tropical 
warm-water habitats are at greater risk under climate change situations (Comte and 
Olden 2017; Payne and Smith 2017; Jarić et al. 2019). Furthermore, the results ob-
tained suggest that the rate of extinction would be higher for species with smaller body 
size and/or geographical range, in agreement with previous findings (Ficke et al. 2007; 
Chessman 2013; Jarić et al. 2019).

These results support the species-energy theory (Hawkins et al. 2003), which pre-
dicts that cool-temperate regions experiencing warming conditions, as well as very dry 
regions facing increased moisture availability, are both expected to exhibit richness in-
creases. Our models predict a higher species richness decline in those river basins with 
greater precipitation and also in those located in warm regions (see Figs 3, 4). The great 
importance of the variables related to precipitation in accounting for temporal species 
richness variations, in our study, differs somewhat from the results provided by other 
worldwide research (Buisson et al. 2008; Graham and Harrod 2009; McCullough et 
al. 2009), which has strongly implicated temperature warming as the major driver that 
will generate future changes in freshwater fish assemblages. However, our results are in 
agreement with those studies carried out in warmer areas (Morrongiello et al. 2011). 
This key difference likely reflects the primary focus of many of the accomplished stud-
ies from northern hemisphere or high-latitude freshwater environments, whereas this 
study was performed at the global scale.

There is an important gap, which was not considered in this study: the effect of chang-
ing flow regimes on freshwater fish diversity (Döll and Zhang 2010; Döll and Bunn 2014). 
The climatic variables related to precipitation (BIO12, BIO15, BIO18 and BIO19) could 
be considered proxies of river flow measurements (Heino et al. 2009). However, changes 
in seasonality or high/low flows may be not fully explained by the climatic variables ap-
plied here. One third of total fish species and one fifth of the endemic fish species in 
Africa occur in eco-regions that may experience a change in discharge or runoff of over 
40% by the 2050s (Thieme et al. 2010). Moreover, there may also be synergies created 
between climatic and non-climatic anthropogenic stressors, such as deforestation, over-
exploitation, habitat degradation and modification, water pollution, flow modification 
and hydropower generation (Döll and Zhang 2010).

In addition to the effect of climate change on species richness and geographic spe-
cies range size, the climate-induced changes in taxonomic diversity observed in the pre-
sent study, which have rarely been addressed for freshwater fish (Buisson and Grenouil-
let 2009), may result in changes in biotic interactions (competition, predation etc.) 
and compositional changes (Comte et al. 2013). In any case, these potential changes in 
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biotic interactions, which may affect species distribution, do not invalidate the use of 
purely climate-based model estimations for the quantification of the probable impacts 
of climate change on species distributions (Araújo and Luoto 2007), as shown herein. 
In conclusion, our results suggest a deep change in the basin assemblages of freshwater 
fish with the extinction of almost half of current freshwater fish species in the coming 
decades. This alarming prediction would particularly affect tropical regions and areas 
with changing water flow regimes by the greater extinction likelihood of those species 
with smaller body size and/or limited geographical ranges.
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