Research Article
Print
Research Article
An analysis of the inter-state similarity of the herpetofaunas of Mexican states
expand article infoJulio A. Lemos-Espinal, Geoffrey R. Smith§
‡ Laboratorio de Ecología-UBIPRO, FES Iztacala UNAM, Tlanepantla, Mexico
§ Denison University, Granville, United States of America
Open Access

Abstract

Mexico is a megadiverse country with high amphibian and reptile richness. Understanding how Mexico’s herpetofauna is shared among Mexican states can contribute to developing conservation plans by figuring out which states may need to coordinate conservation actions. We generated species lists for the herpetofauna for all Mexican states, and used hierarchical clustering analyses to identify clusters of states on the basis of amphibian and reptile species separately. We also calculated pair-wise Jaccard distances for all Mexican states for amphibians, reptiles, and physiographic provinces and estimated the length of shared borders between states and the geographic (straight-line) distance between the centroids of pairs of states. We used these data to explore potential drivers of the cluster analysis results. Our cluster analysis for amphibians identified five clusters with nine subclusters, and for reptiles, resulted in four clusters with six subclusters. In general, the clusters for Mexican amphibians and reptiles have a similar composition of states. However, for amphibians, the states of Veracruz and Puebla form a cluster separate from a large cluster of northeastern Mexican states, whereas in reptiles Veracruz and Puebla cluster with northeastern Mexican states. Jaccard distances of amphibians and reptiles were highly, positively correlated. Both amphibian and reptile Jaccard distances were positively correlated with the physiographic provinces’ Jaccard distance and shared border length and negatively correlated with the distance between centroids. Taken together, our results suggest that the pattern of the sharing of herpetofaunal species among Mexican states is a consequence of the states’ proximity. Such a pattern is consistent with the underlying driver being the similarity of physiographic provinces (i.e., habitats and ecosystems) of these states (i.e., geographic proximity likely reflects, at least in large part, ecological similarity). Our results suggest clusters of states that should coordinate the conservation and management of their herpetofaunas. For example, clusters of states in southern Mexico share a high number of threatened amphibian species and clusters of states in northern Mexico share a high number of threatened reptile species. Oaxaca is also a state that has a unique herpetofauna and a high number of threatened species of both amphibians and reptiles.

Key words

Amphibia, hierarchical clustering, Jaccard’s similarity, physiographic provinces, reptiles

Introduction

Mexico is a megadiverse country, with high species richness for a variety of taxa (Ramamoorthy et al. 1993). In addition, Mexico is the location for several conservation hotspots (Myers et al. 2000; Lira et al. 2002; Sosa and De-nova 2012; Contreras-MacBeath et al. 2014), as well as a country with high levels of endemism for several taxa (e.g., mosses, Delgadillo 1994; mammals: Escalente et al. 2009; vascular plants, Luna-Vega et al. 2013; birds, Bertelli et al. 2017; trees, Tellez et al. 2020). Much of Mexico consists of a transition zone (i.e., the Mexican Transition Zone) between the Nearctic and Neotropical zones (Villaseñor et al. 2020), giving rise to much of its diversity.

Mexico is also an area of high amphibian and reptile richness (e.g., Flores-Villela 1993; Flores-Villela and García-Vázquez 2014; Suazo-Ortuño et al. 2023), but also an area with high extinction debt and risk for these taxa (Chen and Peng 2017). Some amphibian and reptile taxa have centers of endemism in Mexico (Flores-Villela 1993; Suazo-Ortuño et al. 2023). For example, the Sierra Madre Occidental, Sierra Madre Oriental, and the Trans-Mexican Volcanic Belt are well known for being hotspots for differentiation of various Mexican reptiles and amphibians (e.g., Cisneros-Bernal et al. 2022), creating high levels of state endemics, even within the larger ecological province.

Mexico needs conservation approaches that focus on protecting specific areas (Bolam et al. 2023). Understanding how species are shared among ecological or biogeographical provinces is of critical importance to generating such conservation or management plans. Indeed, for amphibians and reptiles, ecoregions are particularly distinct (i.e., have distinct communities) (Smith et al. 2020). However, understanding how species are shared across political entities, such as states within a country, is also important to coordinating efforts among state-level governments (see Liu et al. 2020 for a broader discussion of transborder conservation). Indeed, it has been suggested that efforts to address the factors affecting biodiversity in Mexico will need to be shifted from the federal to state or even local levels (Sarukhán et al. 2015). It is therefore important to understand how the herpetofauna are distributed and shared among political entities within Mexico (i.e., among the Mexican states).

Previous efforts to examine similarity in the herpetofauna among Mexican states have been limited to cluster analyses of the states along both sides of the United States-Mexican border (Enderson et al. 2009; Smith and Lemos-Espinal 2015) and examinations of the number of species shared between focal states and their neighboring states (e.g., Lemos-Espinal and Smith 2020a, b, c; Lemos-Espinal et al. 2020). Here we explore how amphibian and reptile species are shared among Mexican states (including Mexico City) in order to determine how conservation efforts might best be coordinated among political entities. We also examine how similarities among states may be a function of the states’ proximity (distance between centroids and length of shared border) and their similarities in physiographic provinces.

Methods

Using the available literature, we collected species lists for amphibians and reptiles for all of the Mexican states, that we updated using additional literature (see Table 1). We used hierarchical clustering analyses based on Jaccard’s Similarity Coefficients for Binary Data as the distance metric with single linkages methods (nearest neighbor) to generate clusters of states on the basis of amphibian and reptile species separately. We identified clusters and subclusters for amphibians and reptiles separately by visually examining the resulting cluster tree and grouping states that shared common nodes, taking into account the Jaccard distances. Subclusters were groups of states that shared nodes within a larger cluster. We used the species’ lists to calculate pair-wise Jaccard distances for all Mexican states for amphibians and reptiles, separately. We also generated pairwise Jaccard distances with respect to the physiographic provinces found in each state (see Table 2). In addition, we obtained two geospatial estimates: 1) the length of shared borders between the states using the Polygon Neighbors Tool and 2) the straight-line distance between the centroids of the states using the Feature to Point Tool and Point Distance on a Lambert Conformal Conic projection in Datum WGS84 in ArcGIS 10.3.1 (Environmental Systems Research Institute, Inc, Redlands, CA). We ran non-parametric Spearman’s ρ tests to examine correlations among Jaccard distance estimates for amphibians, reptiles, physiographic regions, the length of shared borders, and the distance between the centroids of the states. Cluster analyses were performed using Systat 13.2 (Systat Software Inc., San Jose, CA) and all other statistical analyses were performed using JMP 16.2 (SAS Institute, Cary, NC).

Table 1.

Alphabetical list of Mexican States with the literature sources used to create the species lists of amphibians and reptiles used in the cluster analyses. State names are followed by the abbreviations used in Fig. 1. Source refers to the references from which the checklist for each specific state was obtained. Updates lists references used to update the original checklist we used for each state.

State Source Updates
Aguascalientes (AGS) Carbajal-Márquez and Quintero-Díaz (2016) Cox et al. (2018);
Baja California (BC) Grismer (2002); Hollingsworth et al. (2015) Cox et al. (2018); Meik et al. (2018);
Baja California Sur (BCS) Grismer (2002) Cox et al. (2018); Meik et al. (2018);
Campeche (CAMP) González-Sánchez et al. (2017) Ortiz-Medina et al. (2020); Palacios-Aguilar and Flores-Villela (2020);
Chiapas (CHIS) Johnson et al. (2015) Hernández-Ordóñez et al. (2017); Clause et al. (2020); McCranie et al. (2020); Palacios-Aguilar and Flores-Villela (2020); Lara-Tufiño and Nieto-Montes de Oca (2021)
Chihuahua (CHIH) Lemos-Espinal et al. (2017) Burbrink and Guiher (2014); Montanucci (2015); Blair and Hansen (2018); Cox et al. (2018); Palacios-Aguilar and Flores-Villela (2020); Ramírez-Reyes et al. (2021b)
Coahuila (COAH) Lemos-Espinal and Smith (2016); Lazcano et al. (2019) Burbrink and Guiher (2014); Baeza-Tarin et al. (2018)
Colima (COL) Lemos-Espinal et al. (2020) Horowitz (1955); Montanucci (1979); Hillis et al. (1983); Platz (1991); Webb (2001); McCranie and Köhler (2004); Zaldivar-Riverón et al. (2004); Pérez-Ramos and Saldaña-de la Riva (2008); Lavin et al. (2014); Streicher et al. (2014); Campbell et al. (2018); Cox et al. (2018); Grünwald et al. (2018); O’Connell and Smith (2018); Ramírez-Reyes and Flores-Villela (2018); McCranie et al. (2020); Montaño-Ravalcaba et al. (2020); Palacios-Aguilar and Flores-Villela (2020); Reyes-Velasco et al. (2020a, b)
Durango (DGO) Lemos-Espinal et al. (2018a, 2019b) Montanucci (2015); Campbell et al. (2018); Caviedes-Solis and Nieto-Montes de Oca (2018); Campillo-García et al. (2021); Ramírez-Reyes et al. (2021b)
Guanajuato (GTO) Leyte-Manrique et al. (2022)
Guerrero (GRO) Palacios-Aguilar and Flores-Villela (2018) Ramírez-Reyes et al. (2017); Campbell et al. (2018); Caviedes-Solis and Nieto-Montes de Oca (2018); Cox et al. (2018); García-Vázquez et al. (2018); Palacios-Aguilar et al. (2018); Ramírez-Reyes and Flores-Villela (2018); Blancas-Hernández et al. (2019); Grünwald et al. (2019); Köhler et al. (2019); Kaplan et al. (2020); Palacios-Aguilar and Flores-Villela (2020); Palacios-Aguilar and Santos-Bibiano (2020); Everson et al. (2021); García-Vázquez et al. (2021); Grünwald et al. (2021a, b); Jameson et al. (2022)
Hidalgo (HGO) Lemos-Espinal and Smith (2015); Lemos-Espinal and Dixon (2016) Hansen et al. (2016); Badillo-Saldaña et al. (2018); Caviedes-Solis and Nieto-Montes de Oca (2018)); Ramírez-Bautista et al. (2020); Valencia-Herverth et al. (2020); Bryson et al. (2021); Campillo-García et al. (2021); Tepos-Ramírez et al. (2021)
Jalisco (JAL) Cruz-Sáenz et al. (2017) Ramírez-Reyes et al. (2017); Campbell et al. (2018); Caviedes-Solis and Nieto-Montes de Oca (2018); Cox et al. (2018); Ramírez-Reyes and Flores-Villela (2018); Pazos-Nava et al. (2019); Ahumada-Carrillo et al. (2020); Cavazos-Camacho and Ahumada-Carrillo (2020); McCranie et al. (2020); Palacios-Aguilar and Flores-Villela (2020); Bryson et al. (2021); Campillo-García et al. (2021); Everson et al. (2021); Flores-Villela et al. (2022)
México (MEX) Lemos-Espinal and Smith (2020d) Campbell et al. (2018); Caviedes-Solis and Nieto-Montes de Oca (2018); Kaplan et al. (2020); Bryson et al. (2021); Campillo-García et al. (2021); Everson et al. (2021); Jameson et al. (2022)
Mexico City (CDMX) Lemos-Espinal and Smith (2020c) García-Alvarado (2016); Campillo-García et al. (2021); Everson et al. (2021)
Michoacán (MICH) Alvarado-Díaz et al. (2013) Mendoza-Hernández and Roth-Monzón (2017); Ramírez-Reyes et al. (2017); Campbell et al. (2018); Cox et al. (2018); Ramírez-Reyes and Flores-Villela (2018); McCranie et al. (2020); Palacios-Aguilar and Flores-Villela (2020); Bryson et al. (2021); Campillo-García et al. (2021); Everson et al. (2021); Hernandez et al. (2022)
Morelos (MOR) Lemos-Espinal and Smith (2020b) Campbell et al. (2018); Cox et al. (2018); Palacios-Aguilar and Flores-Villela (2020); Jameson et al. (2022)
Nayarit (NAY) Woolrich-Piña et al. (2016) Ramírez-Reyes et al. (2017, 2021a, b); Campbell et al. (2018); Cox et al. (2018); Loc-Barragán et al. (2018); Ramírez-Reyes and Flores-Villela (2018); Loc-Barragán and Woolrich-Piña (2020); McCranie et al. (2020); Palacios-Aguilar and Flores-Villela (2020); Flores-Villela et al. (2022)
Nuevo León (NL) Lemos-Espinal et al. (2016); Nevárez de los Reyes et al. (2016) Grünwald et al. (2018); Nevarez de los Reyes et al. (2019a, b); Campillo-García et al. (2021)
Oaxaca (OAX) Mata-Silva et al. (2015, 2021) Gray et al. (2016); Parra-Olea et al. (2016); Campbell et al. (2016, 2018); Canseco-Márquez et al. (2017a, b); Ramírez-Reyes et al. (2017); Caviedes-Solis and Nieto-Montes de Oca (2018); García-Padilla et al. (2019); Mata-Silva et al. (2019); Carbajal-Márquez et al. (2020); McCranie et al. (2020); Sánchez-García et al. (2020); García-Vázquez et al. (2021); Grünwald et al. (2021a, b); Jameson et al. (2022); Nieto-Montes de Oca et al. (2022)
Puebla (PUE) Woolrich-Piña et al. (2017) Caviedes-Solis and Nieto-Montes de Oca (2018); Campbell et al. (2018); Cox et al. (2018); de la Torres-Loranca et al. (2020); Fernández-Badillo et al. (2020); Palacios-Aguilar and Flores-Villela (2020); Everson et al. (2021)
Querétaro (QRO) Dixon and Lemos-Espinal (2010); Cruz-Elizalde et al. (2019) Bryson et al. (2021); Tepos-Ramírez et al. (2021)
Quintana Roo (QR) González-Sánchez et al. (2017)
San Luis Potosí (SLP) Lemos-Espinal et al. (2018b) Guajardo Welsh et al. (2020); Palacios-Aguilar and Flores-Villela (2020); Arenas-Moreno et al. (2021); Campillo-García et al. (2021); Tepos-Ramírez et al. (2021)
Sinaloa (SIN) Lemos-Espinal and Smith (2020a) Campbell et al. (2018); Cox et al. (2018); Trageser and Schell (2018); Loc-Barragán et al. (2020a, b); Palacios-Aguilar and Flores-Villela (2020); Ramírez-Reyes et al. (2021b)
Sonora (SON) Rorabaugh and Lemos-Espinal (2016); Lemos-Espinal et al. (2019a) Cox et al. (2018); Meik et al. (2018); Barley et al. (2021); Ramírez-Reyes et al. (2021b)
Tabasco (TABA) Barragán-Vázquez et al. (2022)
Tamaulipas (TAM) Farr (2015); Terán-Juárez et al. (2016) Grünwald et al. (2018); Rautsaw et al. (2018); Sosa-Tovar et al. (2019); Campillo-García et al. (2021)
Tlaxcala (TLAX) Fernández et al. (2006)
Veracruz (VER) Torres-Hernández et al. (2021) Carbajal-Márquez et al. (2020); Schätti et al. (2020); Tepos-Ramírez et al. (2021)
Yucatán (YUC) González-Sánchez et al. (2017) Palacios-Aguilar and Flores-Villela (2020);
Zacatecas (ZAC) Sigala-Rodríguez et al. (2020a, b); J.J. Sigala-Rodríguez, pers. comm.
Table 2.

The distribution of physiographic provinces in all Mexican states. BCP = Baja California Peninsula; SP = Sonoran Plain; SMOc = Sierra Madre Occidental; SPN = Sierra and Plains of the North; SMOr = Sierra Madre Oriental; GPNA = Great Plains of North America; PCP = Pacific Coast Plain; NGCP = North Gulf Coastal Plain; CP = Central Plateau; VA = Volcanic Axis; YP = Yucatan Peninsula; SMS = Sierra Madre del Sur; SGCP = Southern Gulf Coastal Plain; SCG = Sierra of Chiapas and Guatemala; CAMR = Central American Mountain Range.

BCP SP SMOc SPN SMOr GPNA PCP NGCP CP VA YP SMS SGCP SCG CAMR
Aguascalientes 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0
Baja California 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Baja California Sur 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Campeche 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
Chiapas 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
Chihuahua 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
Coahuila 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
Colima 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
Durango 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0
Guanajuato 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0
Guerrero 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
Hidalgo 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0
Jalisco 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0
México 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
Mexico City 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Michoacán 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
Morelos 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
Nayarit 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0
Nuevo León 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
Oaxaca 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1
Puebla 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0
Querétaro 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0
Quintana Roo 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
San Luis Potosí 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
Sinaloa 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
Sonora 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0
Tabasco 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
Tamaulipas 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
Tlaxcala 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Veracruz 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1
Yucatán 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Zacatecas 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0

Results and discussion

Cluster analysis

Our cluster analysis for amphibians generated five clusters, with subclusters apparent in some of the clusters (Figs 1A, 2A). Cluster AI consisted of Baja California and Baja California Sur. Cluster AII includes Tabasco and Chiapas and subcluster AIIa, which includes Yucatán, Quintana Roo, and Campeche. Cluster AIII consists of Veracruz and Puebla. Cluster AIV includes Durango and four subclusters: AIVa includes Morelos and México; AIVb includes Michoacán, Jalisco, and Colima; AIVc includes Nayarit and Sinaloa; and AIVd includes Sonora and Chihuahua. Cluster AV is made up of four subclusters: AVa includes Aguascalientes and Zacatecas; AVb includes Guanajuato and Querétaro; AVc includes San Luis Potosí and Hidalgo; and AVd includes Tamaulipas, Nuevo León, and Coahuila. Tlaxcala and Mexico City connect with a larger grouping of clusters AIII, AIV, and AV. Guerrero and Oaxaca then connect to this large grouping.

Figure 1.

Cluster trees for A) amphibians and B) reptiles arising from a cluster analysis of the herpetofaunas of Mexican states. Main clusters are identified with Roman numerals and subclusters within clusters are identified with lower case letters. AGS = Aguascalientes, BC = Baja California, BCS = Baja California Sur, CAMP = Campeche, CHIS = Chiapas, CHIH = Chihuahua, COAH = Coahuila, COL = Colima, DGO = Durango, GTO = Guanajuato, GRO = Guerrero, HGO = Hidalgo, JAL = Jalisco, MEX = México, CDMX = Mexico City, MICH = Michoacán, MOR = Morelos, NAY = Nayarit, NL = Nuevo León, OAX = Oaxaca, PUE = Puebla, QRO = Querétaro, QR = Quintana Roo, SLP = San Luis Potosí, SIN = Sinaloa, SON = Sonora, TABA = Tabasco, TAM = Tamaulipas, TLAX = Tlaxcala, VER = Veracruz, YUC = Yucatán, ZAC = Zacatecas.

Figure 2.

A map of Mexico showing the locations of the clusters of A amphibians and B reptiles identified by the cluster analyses found in Fig. 1. Different clusters are identified by color and surrounded by a thick border and subclusters within clusters are represented by different shades of the cluster color and by intermediate line thicknesses. AGS = Aguascalientes, BC = Baja California, BCS = Baja California Sur, CAMP = Campeche, CHIS = Chiapas, CHIH = Chihuahua, COAH = Coahuila, COL = Colima, DGO = Durango, GTO = Guanajuato, GRO = Guerrero, HGO = Hidalgo, JAL = Jalisco, MEX = México, CDMX = Mexico City, MICH = Michoacán, MOR = Morelos, NAY = Nayarit, NL = Nuevo León, OAX = Oaxaca, PUE = Puebla, QRO = Querétaro, QR = Quintana Roo, SLP = San Luis Potosí, SIN = Sinaloa, SON = Sonora, TABA = Tabasco, TAM = Tamaulipas, TLAX = Tlaxcala, VER = Veracruz, YUC = Yucatán, ZAC = Zacatecas.

The cluster analysis for reptiles resulted in four clusters, again with subclusters within some clusters (Figs 1B, 2B). Cluster RI consists of Baja California and Baja California Sur. Cluster RII includes Chiapas and Tabasco, as well as subcluster RIIa that includes Campeche, Quintana Roo, and Yucatán. Cluster RIII includes Guanajuato and two subclusters: RIIIa consists of Coahuila, Nuevo León, Tamaulipas, San Luis Potosí, Hidalgo, and Querétaro; whereas RIIIb includes Veracruz and Puebla. Cluster RIV is a large cluster containing Mexico City and Tlaxcala and three subclusters: RIVa includes Aguascalientes, Zacatecas, Durango, Chihuahua, and Sonora; RIVb includes Sinaloa, Nayarit, Jalisco, Michoacán, and Colima; and RIVc includes Morelos and México. Guerrero and Oaxaca connect to a large group that consists of clusters RIII and RIV.

For the most part, the clusters for Mexican amphibians and reptiles are similar. One difference, however, is that in amphibians, Veracruz and Puebla form a cluster separate from the large cluster of the northeastern Mexican states, whereas in reptiles Veracruz and Puebla cluster with the northeastern Mexican states. Our clusters roughly correspond to the five environmental regions identified by Ochoa-Ochoa et al. (2014). The clusters we generated are generally similar to clusters generated for Mexico examining similarity in turtles in North America (Ennen et al. 2017), as well as for endemic Asteraceae, Poaceae, and Musci (Delgadillo et al. 2003). Our clusters show less similarity to the clusters for the plant families examined by Luna-Vega et al. (2013) and Lira et al. (2002), but there are still many commonalities. Much of the underlying similarity among states in our study, and the general commonalities in our cluster analysis and the clusters from the other cited studies above, likely reflects the distribution of biogeographic provinces in Mexico (e.g., Morrone et al. 2017). In other words, the environmental factors and ecosystems found in Mexican states drive the distribution of species, and those states sharing such ecosystems and habitats share more species than those that do not, and these similarities appear to generally hold for several taxa. Thus, the apparently geographic clusters we identified likely arise because of the correlation of geographic traits of states (e.g., latitude, longitude, elevation, proximity to oceans) and environmental traits of states (e.g., physiographic provinces, climate). In terms of conservation policies, such a finding suggests that policies should focus on addressing physiographic provinces rather than states per se. However, our clusters help identify the political entities that need to be involved in the discussions of the ecological entities that are the focus of conservation efforts.

For each cluster, we identified the species that are in a threatened category in the IUCN Red List (i.e., Vulnerable, Endangered, Critically Endangered) and summarized the major threats facing each species based on the IUCN Red List species accounts (IUCN 2022; see Table 3 for amphibians, Table 4 for reptiles). For amphibians, clusters AII and AIII and Oaxaca had particularly high numbers of threatened species and should be the focus of targeted conservation efforts. Unsurprisingly, the main threat to amphibians in these clusters, and indeed all clusters, is changes in anthropogenic land use, including conversion to agriculture, urbanization, and resource extraction. This result emphasizes the need for conservation and management policies that prevent habitat loss and fragmentation by human activity and that seek to restore lost or degraded habitats. Another common threat in these clusters is the specter of non-native species and diseases, primarily the potential for Batrachochytrium dendrobatidis and B. salamandrivorans to cause amphibian declines. In addition, introduction of non-native species appears to affect some species. The monitoring of emerging diseases and policies to prevent the spread or introduction of non-native species, especially fish, should be pursued. Finally, climate change is listed as a threat to species in these clusters. The increased frequency of drought is of particular concern for many of the amphibian species in these clusters. Efforts to ensure water flow or sufficient aquatic habitats for amphibians are needed. Pollution, ranging from agricultural run-off, industrial contamination, mine or drilling waste, and domestic waste, is also another key threat for several species. Policies should be considered that minimize the input of pollutants into the aquatic or terrestrial habitats of amphibians.

Table 3.

A list of amphibian species from each cluster that are considered in a threatened category on the IUCN Red List, as well as the primary threats to each species based on the IUCN Red List species accounts (IUCN 2022). IUCN Categories: VU = Vulnerable, EN = Endangered, CR = Critically Endangered (PE = Possibly extinct). Threats: LU = Land use (urbanization, conversion to agriculture, resource extraction, deforestation), NNS = Non-native species and disease, P = Pollution (agricultural, industrial, domestic), CC = Climate change.

IUCN Category Threats
Cluster AI VU: 0, EN: 1, CR: 0
Anaxyrus californicus EN LU, NNS, CC
Cluster AII VU: 21, EN: 21, CR: 5
Charadrahyla chaneque VU LU, NNS
Craugastor amniscola VU LU, NNS, P
Craugastor brocchi VU LU, NNS, P, CC
Craugastor glaucus EN LU, NNS
Craugastor greggi EN LU, NNS, P, CC
Craugastor matudai EN LU, NNS, P, CC
Craugastor montanus EN LU
Craugastor palenque VU LU, NNS, P, CC
Craugastor pelorus VU LU
Craugastor pozo CR LU
Craugastor stuarti VU LU, NNS, P
Craugastor taylori CR LU
Dryophytes walkeri VU LU, NNS, CC
Duellmanohyla chamulae EN LU, NNS
Exerodonta bivocata EN LU
Exerodonta chimalapa EN LU
Incilius aurarius EN LU, CC
Incilius tacanensis EN LU, NNS, CC
Incilius tutelarius VU LU, NNS, P, CC
Plectrohyla acanthodes EN LU, NNS, P, CC
Plectrohyla avia EN LU, NNS, P, CC
Plectrohyla hartwegi EN LU, NNS, P, CC
Plectrohyla ixil VU LU, NNS, P, CC
Plectrohyla lacertosa EN LU, NNS
Plectrohyla pycnochila CR (PE) LU, NNS
Plectrohyla sagorum VU LU, NNS, P
Ptychohyla macrotympanum VU LU, NNS
Quilticohyla zoque EN LU
Rana macroglossa VU LU, P, CC
Bolitoglossa alberchi VU LU, NNS
Bolitoglossa engelhardti EN LU, NNS, P, CC
Bolitoglossa flavimembris EN LU, NNS, P, CC
Bolitoglossa flaviventris EN LU, NNS, P
Bolitoglossa franklini VU LU, NNS, P, CC
Bolitoglossa hartwegi VU LU, NNS
Bolitoglossa mulleri VU LU, NNS, P
Bolitoglossa stuarti VU LU, NNS, P
Bolitoglossa veracrucis EN LU
Bradytriton silus EN LU, NNS, P, CC
Cryptotriton alvarezdeltoroi EN LU, NNS
Dendrotriton megarhinus VU NNS, CC
Dendrotriton xolocalcae VU NNS, CC
Ixalotriton niger EN LU
Nyctanolis pernix VU LU, NNS, P, CC
Pseudoeurycea brunnata CR LU, NNS, CC
Pseudacris goebeli CR LU, NNS, CC
Pseudoeurycea rex VU LU, NNC, CC
Cluster AIII VU: 13, EN: 28, CR: 26
Bromeliohyla dendroscarta EN LU, NNS
Charadrahyla nephila EN LU, NNS
Charadrahyla taeniopus VU LU, P
Craugastor galacticorhinus EN LU
Craugastor megalotympanum EN LU
Craugastor spatulatus EN LU
Craugastor vulcani EN LU
Duellmanohyla chamulae EN LU, NNS
Ecnomiohyla valancifer CR LU
Exerodonta bivocata EN LU
Exerodonta xera VU LU
Incilius cavifrons EN LU
Incilius cristatus EN LU, P
Megastomatohyla mixomaculata EN LU
Megastomatohyla nubicola CR LU
Ptychohyla zophodes VU LU, NNS
Quilticohyla zoque EN LU
Rana chichicuahutla CR LU, NNS
Rana chiricahuensis VU LU, NNS, P, CC
Rana johni VU LU
Rana pueblae CR (PE) LU
Sarcohyla charadricola CR (PE) LU
Sarcohyla pachyderma CR (PE) LU, NNS
Sarcohyla robertsorum VU LU, NNS
Sarcohyla siopela CR (PE) LU, NNS
Tlalocohyla godmani VU LU, P, CC
Ambystoma altamirani EN LU, NNS, P
Aquiloeurycea cafetalera VU LU, NNS, P
Aquiloeurycea praecellens CR (PE) LU
Aquiloeurycea quetzalanensis CR LU
Bolitoglossa alberchi VU LU, NNS
Bolitoglossa veracrucus EN LU
Chiropterotriton arboreus CR LU
Chiropterotriton aureus CR LU, NNS
Chiropterotriton casasi CR (PE) LU, NNS
Chiropterotriton chiropterus CR LU, NNS
Chiropterotriton chondrostega EN LU, NNS
Chiropterotriton lavae CR LU
Chiropterotriton nubilus CR LU, NNS
Chiropterotriton orculus VU LU, NNS
Chiropterotriton perotensis CR LU, NNS
Chiropterotriton terrestris CR LU, NNS
Chiropterotriton totonacus CR LU, NNS
Isthmura gigantea EN LU, NNS
Isthmura naucampatepetl CR LU, NNS
Notophthalmus meridionalis EN LU, NNS, P
Parvimolge townsendi VU LU, NNS, P
Pseudoeurycea firscheini EN LU
Pseudoeurycea gadovii VU LU
Pseudoeurycea lineola EN LU, NNS
Pseudoeurycea lynchi EN LU
Pseudoeurycea melanomolga EN LU
Pseudoeurycea mixteca VU LU
Pseudoeurycea nigromaculata EN LU, NNS
Pseudoeurycea orchimelas EN LU
Pseudoeurycea werleri EN LU
Thorius dubitus CR LU, NNS
Thorius lunaris CR LU, NNS
Thorius magnipes CR LU, NNS
Thorius maxillabrochus EN LU, NNS
Thorius minydemus EN LU
Thorius munificus CR LU, NNS
Thorius narismagnus CR LU
Thorius pennatulus EN LU, NNS
Thorius schmidti CR LU, NNS
Thorius spilogaster CR LU, NNS
Thorius troglodytes EN LU
Cluster AIV VU: 9, EN: 15, CR: 5
Craugastor vulcani EN LU
Eleutherodactylus erendirae EN LU
Eleutherodactylus floresvillelai VU LU
Eleutherodactylus grunwaldi EN LU
Eleutherodactylus jaliscoensis EN LU
Eleutherodactylus maurus VU LU
Eleutherodactylus nietoi EN LU, NNS
Eleutherodactylus rufescens VU LU
Eleutherodactylus teretistes VU LU
Eleutherodactylus wixarika EN LU
Incilius pisinnus EN LU, P
Rana chiricahuensis VU LU, NNS, P, CC
Rana dunni EN LU, P
Rana tarahumarae VU LU, NNS, P, CC
Rana tlaloci CR (PE) LU, NNS, P
Sarcohyla floresi VU LU, NNS
Smilisca dentata EN LU, P
Ambystoma altamirani EN LU, NNS, P
Ambystoma amblycephalum CR LU, NNS, P
Ambystoma andersoni CR LU, NNS, P
Ambystoma dumerilii CR LU, NNS, P
Ambystoma lermaense EN LU, NNS, P
Ambystoma ordinarium EN LU, NNS, P
Chiropterotriton orculus VU LU, NNS
Isthmura sierraoccidentalis VU LU, NNS
Pseudoeurycea altamontana EN LU
Pseudoeurycea longicauda EN LU, NNS
Pseudoeurycea robertsi CR LU, P
Pseudoeurycea tlilicxitl EN LU
Cluster AV VU: 10, EN: 9, CR: 5
Bromeliohyla dendroscarta EN LU, NNS
Charadrahyla taeniopus VU LU, P
Rana chiricahuensis VU LU, NNS, P, CC
Rana johni VU LU
Sarcohyla charadricola CR (PE) LU
Sarcohyla robertsorum VU LU, NNS
Smilisca dentata EN LU, P
Tlalocohyla godmani VU LU, P, CC
Aquiloeurycea galeanae VU LU
Chiropterotriton arboreus CR LU
Chiropterotriton chico VU NNS
Chiropterotriton chiropterus CR LU, NNS
Chiropterotriton chondrostega EN LU, NNS
Chiropterotriton cieloensis VU NNS, CC
Chiropterotriton cracens VU NNS, CC
Chiropterotriton dimidiatus VU NNS
Chiropterotriton magnipes EN LU, NNS
Chiropterotriton miquihuanus EN LU, NNS
Chiropterotriton mosaueri CR LU
Chiropterotriton multidentatus EN LU, NNS
Chiropterotriton terrestris CR LU, NNS
Isthmura gigantea EN LU, NNS
Notophthalmus meridionalis EN LU, NNS, P
Pseudoeurycea altamontana EN LU
Guerrero VU: 7, EN: 12, CR: 9
Craugastor guerreroensis EN LU
Craugastor saltator EN LU, NNS
Craugastor uno VU LU
Charadrahyla pinorum VU LU, NNS
Charadrahyla trux EN LU, NNS, P
Dryophytes arboricola VU LU
Exerodonta melanomma VU LU
Incilius cycladen VU LU, NNS, P
Incilius gemmifer EN LU
Quilticohyla erythromma VU LU, NNS
Rana omiltemana EN LU, NNS
Sarcohyla chryses EN LU, NNS
Sarcohyla floresi VU LU, NNS
Sarcohyla mykter EN LU, NNS
Sarcohyla thorectes EN LU, NNS
Sarcohyla toyota CR LU, NNS
Ambystoma altamirani EN LU, NNS, P
Isthmura maxima EN LU
Pseudoeurycea ahuitzotl CR LU, NNS
Pseudoeurycea amuzga EN LU, NNS
Pseudoeurycea kuautli CR LU
Pseudoeurycea mixcoatl CR LU, NNS
Pseudoeurycea tenchalli CR LU, NNS
Pseudoeurycea teotepec CR (PE) LU, NNS
Pseudoeurycea tlahcuiloh CR LU, NNS
Thorius grandis CR LU, NNS
Thorius infernalis CR LU, NNS
Thorius omiltemi EN LU, NNS
Mexico City VU: 1, EN: 4, CR: 2
Eleutherodactylus grandis EN LU, P
Rana tlaloci CR (PE) LU, NNS, P
Ambystoma altamirani EN LU, NNS, P
Ambystoma mexicanum CR LU, NNS, P
Chiropterotriton orculus VU LU, NNS
Pseudoeurycea altamontana EN LU
Pseudoeurycea tlilicxitl EN LU
Oaxaca VU: 15, EN: 36, CR: 28
Bromeliohyla dendroscarta EN LU, NNS
Charadrahyla altipotens EN LU
Charadrahyla chaneque VU LU, NNS
Charadrahyla esperancensis VU LU, NNS
Charadrahyla nephila EN LU, NNS
Charadrahyla pinorum VU LU, NNS
Charadrahyla sakbah EN LU, P
Craugastor spatulatus EN LU
Craugastor uno VU LU
Duellmanohyla chamulae EN LU, NNS
Ecnomiohyla echinata CR (PE) LU, NNS
Exerodonta chimalapa EN LU
Exerodonta melanomma VU LU
Exerodonta xera VU LU
Incilius cycladen VU LU, NNS, P
Incilius gemmifer EN LU
Incilius spiculatus EN LU
Incilius tutelarius VU LU, NNS, P, CC
Megastomatohyla mixe CR LU
Megastomatohyla pellita CR LU, NNS
Plectrohyla hartwegi EN LU, NNS, P, CC
Ptychohyla zophodes VU LU, NNS
Quilticohyla acrochorda CR LU, NNS, P
Quilticohyla zoque EN LU
Sarcohyla ameibothalame EN LU, NNS
Sarcohyla calvicollina CR (PE) LU, NNS
Sarcohyla cembra EN LU, NNS
Sarcohyla crassa CR LU, NNS
Sarcohyla cyanomma CR (PE) LU, NNS
Sarcohyla cyclada VU LU, NNS
Sarcohyla hazelae VU LU, P
Sarcohyla labeculata EN LU, NNS
Sarcohyla labedactyla CR LU, NNS
Sarcohyla pentheter VU LU, NNS
Sarcohyla psarosema CR (PE) LU, NNS
Sarcohyla sabrina CR (PE) LU, NNS
Sarcohyla siopela CR (PE) LU, NNS
Sarcohyla thorectes EN LU, NNS
Bolitoglossa alberchi VU LU, NNS
Bolitoglossa macrinii EN LU
Bolitoglossa oaxacensis EN LU
Bolitoglossa riletti EN LU
Bolitoglossa veracrucus EN LU
Bolitoglossa zapoteca EN LU, NNS
Isthmura boneti EN LU, NNS
Isthmura maxima EN LU
Ixalotriton niger EN LU
Ixalotriton parvus CR LU
Pseudoeurycea anitae CR (PE) LU, NNS
Pseudoeurycea aquatica CR LU, NNS
Pseudoeurycea aurantia CR LU
Pseudoeurycea cochranae VU LU
Pseudoeurycea conanti EN LU
Pseudoeurycea juarezi EN LU, NNS
Pseudoeurycea mixteca VU LU
Pseudoeurycea mystax EN LU, NNS
Pseudoeurycea obesa CR LU
Pseudoeurycea orchileucos EN LU, NNS
Pseudoeurycea papenfussi EN LU, NNS, CC
Pseudoeurycea ruficauda EN LU
Pseudoeurycea saltator CR LU
Pseudoeurycea smithi CR LU, NNS
Pseudoeurycea unguidentis CR (PE) LU, NNS
Pseudoeurycea werleri EN LU
Thorius arboreus CR LU, NNS
Thorius aureus CR LU, NNS, CC
Thorius boreas EN LU, NNS, CC
Thorius insperatus CR LU, NNS
Thorius longicaudus CR (PE) LU, NNS
Thorius macdougalli EN LU, NNS
Thorius maxillabrochus EN LU, NNS
Thorius minutissimus CR LU, NNS
Thorius narisovalis EN LU, NNS
Thorius papaloae CR LU, NNS
Thorius pinicola EN LU, NNS
Thorius pulmonaris CR LU, NNS
Thorius schmidti CR LU, NNS
Thorius smithi CR LU, NNS
Thorius tlaxiacus EN LU, NNS
Tlaxcala VU: 2, EN: 1, CR: 0
Sarcohyla robertsorum VU LU, NNS
Isthmura gigantea EN LU, NNS
Pseudoeurycea gadovii VU LU
Table 4.

A list of reptile species from each cluster that are considered in a threatened category on the IUCN Red List, as well as the primary threats to each species based on the IUCN Red List species accounts (IUCN 2022). IUCN Categories: VU = Vulnerable, EN = Endangered, CR = Critically Endangered (PE = Possibly extinct). Threats: LU = Land use (urbanization, conversion to agriculture, resource extraction, deforestation), NNS = Non-native species and disease, P = Pollution (agricultural, industrial, domestic), CC = Climate change, EXP = Exploitation, PER = Persecution, N/A = No threat listed.

IUCN Category Threats
Cluster RI VU: 9, EN: 3, CR: 2
Anniella geronimensis EN LU
Aspidoscelis catalinensis VU NNS
Aspidoscelis labialis VU LU
Sauromalus hispidus EN LU, NNS, CC
Sauromalus klauberi VU NNS, CC
Uta encantadae VU N/A
Uta lowei VU N/A
Uta tumidarostra VU N/A
Crotalus catalinensis CR LU, NNS, EXP
Caretta caretta VU LU, NNS, P, CC
Chelonia mydas EN LU, EXP
Dermochelys coriacea VU LU, P, CC, EXP
Eretmochelys imbricata CR LU, P, CC, EXP
Lepidochelys olivacea VU LU, P, CC, EXP
Cluster RII VU:10, EN: 6, CR: 3
Crocodylus acutus VU LU, NNS, CC, EXP
Abronia matudai EN LU
Anolis barkeri VU LU
Anolis hobartsmithi EN LU
Anolis pygmaeus EN LU
Heloderma alvarezi VU LU, CC, PER
Lepidophyma lipetzi EN LU
Bothriechis aurifer VU LU, EXP
Bothriechis rowleyi VU LU, EXP
Cachryx defensor VU LU, EXP
Leptophis modestus VU LU
Rhadinella posadasi EN LU
Caretta caretta VU LU, NNS, P, CC
Chelonia mydas EN LU, EXP
Chelydra rossignonii VU LU, EXP
Dermatochelys mawii CR LU, P, EXP
Dermochelys coriacea VU LU, P, CC, EXP
Eretmochelys imbricata CR LU, P, CC, EXP
Lepidochelys kempii CR LU, EXP
Cluster RIII VU: 18, EN: 22, CR: 5
Abronia chiszari EN LU
Abronia graminea EN LU, EXP
Abronia taeniata VU LU, EXP
Anolis barkeri VU LU
Anolis naufragus VU LU
Crotaphytus antiquus EN LU
Crotaphytus reticulatus VU LU, NNS
Gerrhonotus parvus EN LU
Lepidophyma gaigeae VU N/A
Lepidophyma micropholis VU N/A
Ophisaurus ceroni EN LU
Sceloporus chaneyi EN LU
Sceloporus cyanostictus EN LU
Sceloporus exsul CR LU
Sceloporus goldmani EN LU
Sceloporus maculosus VU LU
Sceloporus megalepidurus VU LU
Sceloporus oberon VU LU
Uma exsul EN LU
Xenosaurus grandis VU LU
Xenosaurus newmanorum EN LU, PER
Xenosaurus platyceps EN LU, NNS
Adelophis copei VU LU
Chersodromus rubriventris EN LU
Ficimia hardyi EN LU
Mixcoatlus melanurus EN LU, PER
Ophryacus undulatus VU LU
Rhadinaea marcellae EN LU
Rhadinaea montana EN LU
Storeria hidalgoensis VU LU
Tantilla shawi EN LU
Thamnophis melanogaster EN P
Thamnophis mendax EN LU
Thamnophis scaliger VU LU
Caretta caretta VU LU, NNS, P, CC
Chelonia mydas EN LU, EXP
Chelydra rossignonii VU LU, EXP
Dermatemys mawii CR LU, EXP
Dermochelys coriacea VU LU, P, CC, EXP
Eretmochelys imbricata CR LU, P, CC, EXP
Gopherus flavomarginatus CR LU, EXP
Lepidochelys kempii CR LU, EXP
Terrapene coahuila EN LU
Trachemys gaigeae VU LU, P, CC, EXP
Trachemys taylori EN LU, NNS
Cluster RIV VU: 19, EN: 9, CR: 3
Crocodylus acutus VU LU, P, CC, EXP
Abronia deppii EN LU
Aspidoscelis martyris VU N/A
Barisia herrerae EN LU, PER
Barisia rudicollis EN LU, PER
Ctenosaura clarki VU LU
Ctenosaura conspicuosa VU NNS, CC
Ctenosaura nolascensis VU NNS, CC, EXP
Sauromalus varius VU NNS, CC
Sceloporus goldmani EN LU
Sceloporus maculosus VU LU
Sceloporus megalepidurus VU LU
Urosaurus auriculatus EN NNS
Urosaurus clarionensis VU NNS
Uta palmeri VU N/A
Adelophis copei VU LU
Crotalus pusillus EN LU
Crotalus stejneger VU LU
Masticophis anthonyi CR NNS
Thamnophis melanogaster EN P
Thamnophis scaliger VU LU
Caretta caretta VU LU, NNS, P, CC
Chelonia mydas EN LU, EXP
Dermochelys coriacea VU LU, P, CC, EXP
Eretmochelys imbricata CR LU, P, CC, EXP
Gopherus evgoodei VU LU, NNS, CC
Gopherus flavomarginatus CR LU, EXP
Lepidochelys olivacea VU LU, P, CC, EXP
Terrapene coahuila EN LU
Trachemys gaigeae VU LU, P, CC, EXP
Trachemys yaquia VU LU, P, CC, EXP
Guerrero VU: 6, EN: 4, CR: 1
Crocodylus acutus VU LU, P, CC, EXP
Abronia deppii EN LU
Abronia martindelcampoi EN LU
Abronia mixteca VU LU, EXP, PER
Ctenosaura clarki VU LU
Mixcoatlus barbouri EN LU
Ophryacus undulatus VU LU
Chelonia mydas EN LU, EXP
Dermochelys coriacea VU LU, P, CC, EXP
Eretmochelys imbricata CR LU, P, CC, EXP
Lepidochelys olivacea VU LU, P, CC, EXP
Oaxaca VU: 14, EN: 7, CR: 3
Crocodylus acutus VU LU, P, CC, EXP
Abronia fuscolabialis EN LU
Abronia graminea EN LU, EXP
Abronia juarezi EN LU
Abronia mixteca VU LU, EXP, PER
Abronia oaxacae VU LU
Anolis pygmaeus EN LU
Ctenosaura oaxacana CR LU, EXP
Heloderma alvarezi VU LU, CC, PER
Sceloporus megalepidurus VU LU
Xenosaurus grandis VU LU
Bothriechis rowleyi LU, EXP
Exiliboa placata VU LU
Micrurus ephippifer VU LU
Mixcoatlus melanurus EN LU, PER
Ophryacus undulatus VU LU
Tantilla flavilineata EN LU
Tantalophis discolor VU LU
Chelonia mydas EN LU, EXP
Chelydra rossignonii VU LU, EXP
Dermatemys mawii CR LU, P, EXP
Dermochelys coriacea VU LU, P, CC, EXP
Eretmochelys imbricata CR LU, P, CC, EXP
Lepidochelys olivacea VU LU, P, CC, EXP

For reptiles, cluster RIII has the highest number of threatened species, followed by cluster RIV and Oaxaca. As with amphibians, anthropogenic land use change in its many forms is ubiquitous as a threat to reptiles in each cluster. Again, efforts to minimize habitat loss and fragmentation are desperately needed, as are efforts to restore or reclaim habitats. For many species of reptiles, harvesting for the pet trade or for food, as well as persecution by humans, is another major threat. Establishment and enforcement of laws regulating the harvesting or killing of reptiles should be considered. In addition, education of local residents about the value and harmlessness of many of the persecuted species of reptiles could help to reduce persecution. Climate change, particularly through its effects on changing or shifting habitats, is also a potential threat to several species of reptiles, as is pollution. In addition, introduced species (e.g., rats, cats, and dogs) are important threats to island species in cluster RI.

When we consider the clusters of states that have high numbers of threatened amphibians and reptiles it is interesting to note that the states included in those clusters do not greatly overlap. For amphibians, the clusters with high numbers of threatened species are in southern Mexico whereas those for reptiles are in northern Mexico. However, Oaxaca has a high number of threatened species of both amphibians and reptiles, suggesting it needs to be a high priority of conservation efforts (see also Mata-Silva et al. 2015, 2021). The difference in the apparent distribution of high numbers of threatened species of amphibians and reptiles, as well as the secondary threats for each group (i.e., beyond anthropogenic land use change), suggested that each taxonomic group may need to be considered separately rather than as a single herpetofauna as conservation efforts are prioritized.

Similarities

The Jaccard distances of amphibians and reptiles were highly, positively correlated (Fig. 3; n = 32, Spearman’s ρ = 0.90, P < 0.0001). Amphibian Jaccard distances were positively correlated with the physiographic province Jaccard distance (Fig. 4A; n = 32, Spearman’s ρ = 0.684, P < 0.0001) and shared border length (Fig. 4B; n = 32, Spearman’s ρ = 0.498, P < 0.0001), and negatively correlated with the distance between centroids (Fig. 4C; n = 32, Spearman’s ρ = -0.716, P < 0.0001). Reptile Jaccard distances were positively correlated with physiographic province Jaccard distances (Fig. 4D; n = 32, Spearman’s ρ = 0.76, P < 0.0001) and shared border length (Fig. 4E; n = 32, Spearman’s ρ = 0.536, P < 0.0001), and negatively correlated with distance between centroids (Fig. 4F; n = 32, Spearman’s ρ = -0,779, P < 0.0001). The length of the shared border and the Jaccard distance for physiographic provinces were positively correlated (Fig. 5A; n = 32, Spearman’s ρ = 0.543, P < 0.0001). The distance between centroids and the Jaccard distance for physiographic regions were negatively correlated (Fig. 5B; n = 32, Spearman’s ρ = -0.778, P < 0.0001).

Figure 3.

The correlation between the Jaccard distance of amphibians and reptiles among all pairs of Mexican states.

Figure 4.

The relationships between Jaccard distances for physiographic regions, length of shared border, and distance between centroids of all pairs of Mexican states and the Jaccard distances of amphibians (A, B, C respectively) and reptiles (D, E, F respectively).

Figure 5.

The relationship of length of shared border and distance between centroids with the Jaccard distance of physiographic provinces among all pairs of Mexican states.

Taken together, our results suggest that many of the similarities and differences in the herpetofauna among Mexican states is a consequence of their proximity, at least in terms of the distance between the states. Such correlations are likely the result of such proximity on the similarity of physiographic provinces (i.e., habitats and ecosystems) of these states. These results are consistent with previous studies on similarities among communities or states of other taxa in Mexico and other geographic areas. For example, similarity of state-level floras and faunas typically decreases with the geographic distance between states (e.g., Qian and Ricklefs 2006). In addition, beta diversity of European reptiles increases with geographic distance between communities (Keil et al. 2012). In Mexico, similarity of flora among states is explained in good part by the proximity of the states, with neighboring states often sharing endemics and other species (Delgadillo et al. 2003).

The positive correlation between shared border length and Jaccard distances for reptiles, amphibians, and physiographic provinces deserves exploration. This result is, on the surface, counterintuitive: states that share a longer border would be expected to share more species or physiographic provinces (i.e., a negative correlation between Jaccard distances and shared border lengths). However, we used a shared border metric that is the absolute length of a shared border. Thus, a low value for shared border length could indicate a variety of things. First, a value of zero for shared border length clearly indicates the states do not touch at all. Second, two small states that share much of their border would still have a relatively low value for shared border length (e.g., Mexico City, México, and Morelos; Aguascalientes and Zacatecas). Third, two states may be very close geographically but have either no shared border (e.g., Tlaxcala and Mexico City, Chiapas and Campeche) or a very short, shared border (e.g., Baja California and Baja California Sur, Zacatecas and Nayarit, Nayarit and Sinaloa). It may be more useful to look more carefully at Figs 4B and 4E. Visually, it looks as if there is only a weak correlation between the absolute length of a shared border and Jaccard distance. Thus, when considering states that should work together for conservation, focus should be on other aspects, such as shared physiographic provinces or species rather than simply a shared border.

Conclusions

Political borders can have significant effects on the abundance and diversity of populations and communities due to differing policies across the border (e.g., Shanas et al. 2006; Opermanis et al. 2012). It therefore should be a priority for states sharing species to work together for conservation rather than each state working in isolation (see also Dertien et al. 2020). Our results hopefully suggest clusters of states that would do well to work together to coordinate the conservation and management of their herpetofaunas (i.e., states in the same clusters or subclusters; see Fig. 2). This is especially true given the nature of the major threats to the Mexican herpetofauna are the type of threats that span across potential borders and would benefit from concerted efforts and elevated communication, including loss of habitats, pollution, harvesting and pet trade, invasive species, and climate change (Suazo-Ortuño et al. 2023).

Acknowledgments

We are grateful to A. Núñez Merchand from the National Commission for the Understanding and Use of Biodiversity (CONABIO) for kindly providing the Mexican political map and generating the centroid distances and shared border lengths. We are grateful to J. Sigala-Rodríguez for allowing us access to an unpublished list of amphibians and reptiles of Zacatecas.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This study was made possible through the generous support provided by the Dirección General de Asuntos del Personal Académico – Programa de Apoyos para la Superación del Personal Académico de la UNAM (DGAPA-PASPA) through the scholarship assigned to JLE for his sabbatical year at the University of Colorado, Boulder and by the Dirección General de Asunto del Personal Académico – Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológicas (DGAPA-PAPIIT) through the project IN202021.

Author contributions

Conceptualization: GRS, JLE. Data curation: GRS, JLE. Formal analysis: JLE, GRS. Funding acquisition: GRS.

Author ORCIDs

Julio A. Lemos-Espinal https://orcid.org/0000-0003-3952-9852

Geoffrey R. Smith https://orcid.org/0000-0001-7115-649X

Data availability

All of the data that support the findings of this study are available in the main text.

References

  • Ahumada-Carrillo IT, Grünwald CI, Cuellar MAL, Jones JM (2020) Some records of amphibians and reptiles from the Wixarica Region in the State of Jalisco, Mexico. Herpetological Review 51: 277–281.
  • Arenas-Moreno DM, Muñoz-Nolasco FJ, Bautista del Moral A, Rodríguez-Miranda LA, Dominguez-Guerrero SF, Méndez de la Cruz FR (2021) A new species of Lepidophyma (Squamata: Xantusiidae) from San Luis Potosí, México, with notes on its physiological ecology. Zootaxa 4949(1): 115–130. https://doi.org/10.11646/zootaxa.4949.1.6
  • Badillo-Saldaña LM, Lara-Tufiño JD, Ramírez-Bautista A, Campbell JA (2018) New state record and potential distribution of the snake Sibon nebulatus (Dipsadidae) from Mexico. Western North American Naturalist 78(2): 242–246. https://doi.org/10.3398/064.078.0201
  • Baeza-Tarin F, Hernandez T, Giovaneto L, Trevino AE, Lazcano D, Graham SP (2018) Geographic distribution: Lampropeltis gentilis. Herpetological Review 49: 505.
  • Barley AJ, Reeder TW, Nieto-Montes de Oca A, Cole CJ, Thomson RC (2021) A new diploid parthenogenetic whiptail lizard from Sonora, Mexico is the ‘missing link’ in the evolutionary transition to polyploidy. American Naturalist 198(2): 295–309. https://doi.org/10.1086/715056
  • Bertelli S, Szumik C, Goloboff PA, Giannini NP, Navarro-Sigüenza AG, Peterson AT, Cracraft J (2017) Mexican land birds reveal complexity in fine-scale patterns of endemism. Journal of Biogeography 44(8): 1836–1846. https://doi.org/10.1111/jbi.12987
  • Blair RC, Hansen RW (2018) Geographic distribution: Lampropeltis alterna. Herpetological Review 49: 718.
  • Blancas-Hernández JC, Palacios-Aguilar R, Santos-Bibiano R (2019) Tropidodipsas sartori (Cope, 1863) (Squamata: Dipsadidae): an addition to the snake fauna from Guerrero, Mexico. Herpetozoa (Wien) 32: 91–93. https://doi.org/10.3897/herpetozoa.32.e35911
  • Bolam FC, Ahumada J, Akçakaja HR, Brooks TM, Elliott W, Hoban S, Mair L, Mallon D, McGowan PJK, Raimondo D, Rodríguez JP, Roe D, Seddon MB, Shen X, Stuart SN, Watson JEM, Butchart SHM (2023) Over half of threatened species require targeted recovery actions to avert human-induced extinction. Frontiers in Ecology and the Environment 21(2): 64–70. https://doi.org/10.1002/fee.2537
  • Bryson Jr RW, Grummer JA, Connors EM, Tirpak J, McCormack JE, Klicka J (2021) Cryptic diversity across the Trans-Mexican Volcanic Belt of Mexico in the montane bunchgrass lizard Sceloporus subniger (Squamata: Phrynosomatidae). Zootaxa 4963(2): 335–353. https://doi.org/10.11646/zootaxa.4963.2.5
  • Burbrink FT, Guiher TJ (2014) Considering gene flow when using coalescent methods to delimit lineages of North American pitvipers of the genus Agkistrodon. Zoological Journal of the Linnean Society 173(2): 505–526. https://doi.org/10.1111/zoj.12211
  • Campbell JA, Solano-Zavaleta I, Flores-Villela O, Caviedes-Solis IW, Frost DR (2016) A new species of Abronia (Squamata: Anguidae) from the Sierra Madre del Sur of Oaxaca, Mexico. Journal of Herpetology 50(1): 149–156. https://doi.org/10.1670/14-162
  • Campbell JA, Brodie Jr ED, Caviedes-Solis IW, de Oca Nieto-Montes A, Luja VH, Flores-Villela O, García-Vázquez UO, Sacher GC, Wostl E, Smith EN (2018) Systematics of the frogs allocated to Sarcohyla bistincta sensu lato (Cope, 1877), with description of a new species from western Mexico. Zootaxa 4422(3): 366–384. https://doi.org/10.11646/zootaxa.4422.3.3
  • Campillo-García G, Flores-Villela O, Butler BO, Velasco Vinasco JA, Ramírez Corona F (2021) Hidden diversity within a polytypic species: The enigmatic Sceloporus torquatus Wiegmann, 1828 (Reptilia, Squamata, Phrynosomatidae). Vertebrate Zoology 71: 781–798. https://doi.org/10.3897/vz.71.e71995
  • Canseco-Márquez L, Aguilar-López JL, Luría-Manzano R, Pineda E, Caviedes-Solís IW (2017a) A new species of treefrog of the genus Ptychohyla (Anura: Hylidae) from southern Mexico. Zootaxa 4317(2): 279–290. https://doi.org/10.11646/zootaxa.4317.2.5
  • Canseco-Márquez L, Ramírez-González CG, González-Bernal E (2017b) Discovery of another new species of Charadrahyla (Anura; Hylidae) from the cloud forest of northern Oaxaca, México. Zootaxa 4329(1): 64–72. https://doi.org/10.11646/zootaxa.4329.1.2
  • Carbajal-Márquez RA, Cedeño-Vázquez JR, Martínez-Arce A, Neri-Castro E, Machkour-M’Rabet SC (2020) Accessing cryptic diversity in Neotropical rattlesnakes (Serpentes: Viperidae: Crotalus) with the description of two new species. Zootaxa 4729(4): 451–481. https://doi.org/10.11646/zootaxa.4729.4.1
  • Cavazos-Camacho C, Ahumada-Carrillo IT (2020) Geographic distribution: Pituophis lineatocollis. Herpetological Review 51: 275.
  • Caviedes-Solis IW, de Oca Nieto-Montes A (2018) A multilocus phylogeny of the genus Sarcohyla (Anura: Hylidae), and an investigation of species boundaries using statistical species delimitation. Molecular Phylogenetics and Evolution 118: 184–193. https://doi.org/10.1016/j.ympev.2017.09.010
  • Chen Y, Peng S (2017) Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals. Scientific Reports 7(1): 44305. https://doi.org/10.1038/srep44305
  • Cisneros-Bernal AY, Rodríguez-Gómez F, Flores-Villela O, Fujita MK, Velasco JA, Fernández JA (2022) Phylogeography supports lineage divergence for an endemic rattlesnake (Crotalus ravus) of the Neotropical montane forest in the Trans-Mexican Volcanic Belt. Biological Journal of the Linnean Society. Linnean Society of London 137(3): 496–512. https://doi.org/10.1093/biolinnean/blac066
  • Contreras-MacBeath T, Brito Rodríguez M, Sorani V, Godlspink C, McGregor Reid G (2014) Richness and endemism of the freshwater fishes of Mexico. Journal of Threatened Taxa 6(2): 5421–5433. https://doi.org/10.11609/JoTT.o3633.5421-33
  • Cox CL, Davis Rubosky AR, Holmes IA, Reyes-Velasco J, Roelke CE, Smith EN, Flores-Villela O, McGuire JA, Campbell JA (2018) Synopsis and taxonomic revision of three genera in the snake tribe Sonorini. Journal of Natural History 52(13–16): 945–988. https://doi.org/10.1080/00222933.2018.1449912
  • Cruz-Elizalde R, Ramírez-Bautista A, Hernández-Salinas U, Berriozabal-Islas C, Wilson LD (2019) An updated checklist of the herpetofauna of Querétaro, Mexico: Species richness, diversity, and conservation status. Zootaxa 4638(2): 273–290. https://doi.org/10.11646/zootaxa.4638.2.7
  • De la Torres-Loranca MA, Martínez-Fuentes RG, Canseco-Marquez L, García-Vázquez UO (2020) New records of amphibians and reptiles from Sierra de Zongolica, Veracruz and Puebla, Mexico. Herpetological Review 51: 550–553.
  • Delgadillo MC, Villaseñor Ríos JL, Aranda PD (2003) Endemism in the Mexican flora: A comparative study in three plant groups. Annals of the Missouri Botanical Garden 90(1): 25–34. https://doi.org/10.2307/3298523
  • Dertien JS, Self S, Ross BE, Barrett K, Baldwin RF (2020) The relationship between biodiversity and wetland cover varies across regions of the conterminous United States. PLoS ONE 15(5): e0232052. https://doi.org/10.1371/journal.pone.0232052
  • Dixon JR, Lemos-Espinal JA (2010) Anfibios y Reptiles del Estado de Querétaro, México/Amphibians and Reptiles of the State of Querétaro, Mexico. CONABIO, Mexico, 428 pp.
  • Enderson EF, Quijada-Mascarenas A, Turner DS, Rosen PC, Bezy RL (2009) The herpetofauna of Sonora, Mexico, with comparisons to adjoining states. Check List 5(3): 632–672. https://doi.org/10.15560/5.3.632
  • Ennen JR, Matamoros WA, Agha M, Lovich JE, Sweat SC, Hoagstrom CW (2017) Hierarchical, quantitative biogeographic processes for all North American turtles and their contribution to the biogeography of turtles and the continent. Herpetological Monograph 31(1): 114–140. https://doi.org/10.1655/HERPMONOGRAPHS-D-16-00013
  • Escalente T, Szumik C, Morrone JJ (2009) Areas of endemism of Mexican mammals: Reanalysis applying the optimality criterion. Biological Journal of the Linnean Society, Linnean Society of London 98(2): 468–478. https://doi.org/10.1111/j.1095-8312.2009.01293.x
  • Everson KM, Gray LN, Jones AG, Lawrence NM, Foley ME, Sovacool KL, Kratovil JD, Hotaling S, Hime PM, Storfer A, Parra-Olea G, Percino-Daniel R, Aguilar-Miguel X, O’Neill EM, Zambrano L, Shaffer HB, Weisrock DW (2021) Geography is more important than life history in the recent diversification of the tiger salamander complex. Proceedings of the National Academy of Sciences of the United States of America 18(17): 1–10. https://doi.org/10.1073/pnas.2014719118
  • Farr W (2015) Herpetofauna of Tamaulipas. In: Lemos-Espinal JA (Ed.) Amphibians and Reptiles of the US – Mexico Border States / Anfibios y Reptiles de los Estados de la Frontera México – Estados Unidos. Texas A&M University Press, College Station, 101–121.
  • Fernández JA, Sánchez O, Flores-Villela O (2006) Anfibios y reptiles del Estado de Tlaxcala. Publicaciones de la Sociedad Herpetológica Mexicana 3: 224240.
  • Flores-Villela O (1993) Herpetofauna of Mexico: Distribution and endemism. In: Ramamoorthy TJ, Bye R, Lot A, Fa J (Eds) Biological Diversity of Mexico: Origins and Distribution. Oxford University Press, New York, 253–280.
  • Flores-Villela O, García-Vázquez UO (2014) Biodiversidad de reptiles en México. Revista Mexicana de Biodiversidad 85: S467–S475. https://doi.org/10.7550/rmb.43236
  • Flores-Villela O, Smith EN, Campillo-García G, Martínez-Méndez N, Campbell JA (2022) A new species of Sceloporus of the torquatus group (Reptilia: Phrynosomatidae) from west Mexico. Zootaxa 5134(2): 286–296. https://doi.org/10.11646/zootaxa.5134.2.7
  • García-Alvarado F (2016) Geographic distribution: Hemidactylus frenatus. Herpetological Review 47: 423.
  • García-Padilla E, Figiel JJ, Wilson LD, Mata-Silva V (2019) Geographical distribution: Bolitoglossa mexicana. Herpetological Review 50: 744.
  • García-Vázquez UO, Pavón-Vázquez GJ, Blancas-Hernández JC, Blancas-Calva E, Centenero-Alcalá E (2018) A new rare species of the Rhadinaea decorata group from the Sierra Madre del Sur of Guerrero, Mexico (Squamata, Colubridae). ZooKeys 780: 137–154. https://doi.org/10.3897/zookeys.780.25593
  • García-Vázquez UO, Pavón-Vázquez CJ, Feria-Ortiz M, de Oca Nieto-Montes A (2021) A new species of Blue-tailed Skink (Scincidae: Plestiodon) from the Sierra Madre del Sur, Mexico. Herpetologica 77(1): 85–93. https://doi.org/10.1655/0018-0831-77.1.85
  • González-Sánchez VH, Johnson JD, García-Padilla E, Mata-Silva V, DeSantis DL, Wilson LD (2017) The herpetofauna of the Mexican Yucatan Peninsula: Composition, distribution, and conservation. Mesoamerican Herpetology 4: 264–380.
  • Gray L, Meza-Lázaro R, Poe S, Nieto-Montes de Oca A (2016) A new species of semiaquatic Anolis (Squamata: Dactyloidae) from Oaxaca and Veracruz, Mexico. The Herpetological Journal 26: 253–262.
  • Grünwald CI, Reyes-Velasco J, Franz-Chávez H, Morales-Flores K, Ahumada-Carrillo I, Jones JM, Boissinot S (2018) Six new species of Eleutherodactylus (Anura: Eleutherodactylidae: subgenus Syrrhophus) from Mexico, with a discussion of their systematic relationships and the validity of related species. Mesoamerican Herpetology 5: 7–81.
  • Grünwald CI, Franz-Chávez H, Morales-Flores KI, Ahumada-Carrillo IT, Jones JM (2019) A rare new treefrog of the genus Sarcohyla (Anura: Hylidae) from Guerrero, Mexico. Zootaxa 4712(3): 345–364. https://doi.org/10.11646/zootaxa.4712.3.2
  • Grünwald CI, Toribio-Jiménez S, Montaño-Ruvalcaba C, Franz-Chávez H, Peñaloza-Montaño MA, Barrera-Nava EY, Jones JM, Rodríguez CM, Hughes IM, Strickland JL, Reyes-Velasco J (2021b) Two new species of snail-eating snakes of the genus Tropidodipsas (Serpentes, Dipsadidae) from southern Mexico, with notes on related species. Herpetozoa (Wien) 34: 233–257. https://doi.org/10.3897/herpetozoa.34.e69176
  • Guajardo Welsh R, Lazcano D, Bryson RW (2020) Geographic distribution: Lampropeltis leonis. Herpetological Review 51: 80.
  • Hansen RW, Fernández-Badillo L, Ramírez-Bautista A, Avalos-Torales O (2016) Geographic distribution: Lampropeltis mexicana. Herpetological Review 47: 262–263.
  • Hernandez A, Dufresnes C, Raffaëlli J, Jelsch E, Dubey S, Santiago-Pérez AL, Rosas-Espinoza VC, Berea Nuñez P (2022) Hope in the dark: Discovery of a population related to the presumably extinct mice-endemic Blunt-headed Salamander (Ambystoma amblycephalum). Neotropical Biodiversity 8(1): 35–44. https://doi.org/10.1080/23766808.2022.2029323
  • Hernández-Ordóñez O, Cervantes-López MdJ, González-Hernández A, Andresen E, Reynoso VH (2017) First record of the limestone rainfrog Craugastor psephosypharus (Amphibia: Anura: Craugastoridae) in Mexico. Revista Mexicana de Biodiversidad 88(1): 260–264. https://doi.org/10.1016/j.rmb.2017.01.005
  • Hillis DM, Frost JS, Wright DA (1983) Phylogeny and biogeography of the Rana pipiens complex: A biochemical evaluation. Systematic Biology 32(2): 132–143. https://doi.org/10.1093/sysbio/32.2.132
  • Hollingsworth BD, Mahrdt CR, Grismer LL, Lovich RE (2015) Herpetofauna of Baja California. In: Lemos-Espinal JA (Ed.) Amphibians and Reptiles of the US – Mexico Border States / Anfibios y Reptiles de los Estados de la Frontera México – Estados Unidos. Texas A&M University Press, College Station, 15–33.
  • Horowitz SB (1955) An arrangement of the subspecies of the horned toad, Phrynosoma orbiculare (Iguanidae). American Midland Naturalist 54(1): 204–218. https://doi.org/10.2307/2422188
  • Jameson TJM, Streicher JW, Manuelli L, Head JJ, Smith EN (2022) Miniaturization in direct-developing frogs from Mexico with the description of six new species. Herpetological Monograph 36(1): 1–48. https://doi.org/10.1655/0733-1347-36.1.1
  • Johnson JD, Mata-Silva V, García-Padilla E, Wilson LD (2015) The herpetofauna of Chiapas, Mexico: Composition, physiographic distribution, and conservation status. Mesoamerican Herpetology 2: 272–329.
  • Kaplan M, Heimes P, Aguilar R (2020) A new species of Sarcohyla (Anura: Hylidae: Hylini) from the Sierra Madre del Sur of Guerrero and Estado de México, México. Zootaxa 4743(3): 382–390. https://doi.org/10.11646/zootaxa.4743.3.5
  • Keil P, Schweiger O, Kühn I, Kunin WE, Kuussaari M, Settele J, Henle K, Brotons L, Pe’er G, Lengyel S, Moustakas A, Steinicke H, Storch D (2012) Patterns of beta diversity in Europe: The role of climate, land cover and distance across scales. Journal of Biogeography 39(8): 1473–1486. https://doi.org/10.1111/j.1365-2699.2012.02701.x
  • Köhler G, Petersen CBP, Méndez de la Cruz FR (2019) A new species of anole from the Sierra Madre del Sur in Guerrero, Mexico (Reptilia, Squamata, Dactyloidae: Norops). Vertebrate Zoology 69: 145–160. https://doi.org/10.26049/VZ69-2-2019-02
  • Lavin PA, Lazcano D, Gadsden H (2014) Anfibios y reptiles exóticos y traslocados invasores. In: Mendoza R, Koleff P (Eds) Especies Acuáticas Invasoras en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, 435–441.
  • Lemos-Espinal JA, Smith GR (2020a) A checklist of the amphibians and reptiles of Sinaloa, Mexico with a conservation status summary and comparisons with neighboring states. ZooKeys 931: 85–114. https://doi.org/10.3897/zookeys.931.50922
  • Lemos-Espinal JA, Smith GR (2020c) A conservation checklist of the amphibians and reptiles of Mexico City, with comparisons with adjoining states. ZooKeys 951: 109–131. https://doi.org/10.3897/zookeys.951.52578
  • Lemos-Espinal JA, Smith GR (2020d) A conservation checklist of the amphibians and reptiles of the State of Mexico, Mexico with comparisons with adjoining states. ZooKeys 953: 137–159. https://doi.org/10.3897/zookeys.953.50881
  • Lemos-Espinal J.A. Smith GR, Woolrich-Piña GA, Cruz A (2017) Amphibians and reptiles of the state of Chihuahua, Mexico, with comparisons with adjoining states. ZooKeys 658: 105–130. https://doi.org/10.3897/zookeys.658.10665
  • Lemos-Espinal JA, Smith GR, Gadsden-Esparza H, Valdez-Lares R, Woolrich-Piña GA (2018a) Amphibians and reptiles of the state of Durango, Mexico, with comparisons with adjoining states. ZooKeys 748: 65–87. https://doi.org/10.3897/zookeys.748.22768
  • Lemos-Espinal JA, Smith GR, Woolrich-Piña GA (2018b) Amphibians and reptiles of the state of San Luis Potosí, Mexico, with comparisons with adjoining states. ZooKeys 753: 83–106. https://doi.org/10.3897/zookeys.753.21094
  • Lemos-Espinal JA, Smith GR, Rorabaugh JC (2019a) A conservation checklist of the amphibians and reptiles of Sonora, Mexico, with updated species lists. ZooKeys 829: 131–160. https://doi.org/10.3897/zookeys.829.32146
  • Lemos Espinal JA, Smith GR, Valdez-Lares R (2019b) Amphibians and Reptiles of Durango, México. ECO-Herpetological Publishing and Distribution, Rodeo, 414 pp.
  • Lemos-Espinal JA, Smith GR, Pierce LJS, Painter CW (2020) The amphibians and reptiles of Colima, Mexico, with a summary of their conservation status. ZooKeys 927: 99–125. https://doi.org/10.3897/zookeys.927.50064
  • Lira R, Villaseñor JL, Ortíz E (2002) A proposal for the conservation of the family Cucurbitaceae in Mexico. Biodiversity and Conservation 11(10): 1699–1720. https://doi.org/10.1023/A:1020303905416
  • Liu J, Yong DL, Choi C-Y, Gibson L (2020) Transboundary frontiers: An emerging priority for biodiversity conservation. Trends in Ecology & Evolution 35(8): 679–690. https://doi.org/10.1016/j.tree.2020.03.004
  • Loc-Barragán JA, Lazcano D, Woolrich-Piña GA (2018) Notes on the herpetofauna of Nayarit, Mexico 2: Amphibians and reptiles of the municipality of Compostela. Bulletin of the Chicago Herpetological Society 53: 205–212.
  • Loc-Barragán JA, Woolrich-Piña GA (2020) Sceloporus bulleri. Mexico: Nayarit. Herpetological Review 51: 778.
  • Loc-Barragán JA, Franz-Chávez H, Grünwald AJ, Grünwald CI (2020a) Geographic distribution: Eleutherodactylus palidus. Herpetological Review 51: 532.
  • Loc-Barragán JA, Reyes-Velasco J, Woolrich-Piña G, Grünwald C, De Anaya M, Rangel-Mendoza J, López-Luna M (2020b) A new species of mud turtle of genus Kinosternon (Testudines: Kinosternidae) from the Pacific Coastal Plain of north western Mexico. Zootaxa 4885(4): 509–529. https://doi.org/10.11646/zootaxa.4885.4.3
  • Luna-Vega I, Espinosa D, Rivas G, Contreras-Medina R (2013) Geographical patterns and determinants of species richness in Mexico across selected families of vascular plants: Implications for conservation. Systematics and Biodiversity 11(2): 237–256. https://doi.org/10.1080/14772000.2013.797517
  • Mata-Silva V, Johnson JD, Wilson LD, García-Padilla E (2015) The herpetofauna of Oaxaca, Mexico: Composition, physiographic distribution, and conservation status. Mesoamerican Herpetology 2: 6–62.
  • Mata-Silva V, Rocha A, Ramírez-Bautista A, Berriozabal-Islas C, Wilson LD (2019) A new species of forest snake of the genus Rhadinaea from tropical montane rainforest in the Sierra Madre del Sur of Oaxaca, Mexico (Squamata, Dipsadidae). ZooKeys 813: 55–65. https://doi.org/10.3897/zookeys.813.29617
  • Mata-Silva V, García-Padilla E, Rocha A, De Santis DL, Johnson JD, Ramírez-Bautista A, Wilson LD (2021) A reexamination of the herpetofauana of Oaxaca, Mexico: Composition, update, physiographic distribution, and conservation commentary. Zootaxa 4996(2): 201–252. https://doi.org/10.11646/zootaxa.4996.2.1
  • McCranie JR, Köhler G (2004) Laemanctus longipes. Catalogue of American Amphibians and Reptiles 795: 1–4.
  • McCranie JR, Matthews AJ, Hedges B (2020) A morphological and molecular revision of lizards of the genus Marisora Hedges & Conn (Squamata: Mabuyidae) from Central America and Mexico, with descriptions of four new species. Zootaxa 4763(3): 301–353. https://doi.org/10.11646/zootaxa.4763.3.1
  • Meik JM, Schaack S, Flores-Villela O, Streicher JW (2018) Integrative taxonomy at the nexus of population divergence and speciation in insular speckled rattlesnakes. Journal of Natural History 52(13–16): 989–1016. https://doi.org/10.1080/00222933.2018.1429689
  • Mendoza-Hernández AA, Roth-Monzón AJ (2017) Geographic distribution: Trachemys ornata. Herpetological Review 48: 387–388.
  • Montaño-Ravalcaba C, Reyes-Velasco J, Grünwald CI, Jones JM (2020) Geographic distribution: Geophis pyburni. Herpetological Review 51: 545.
  • Montanucci RR (1979) Notes on systematics of horned lizards allied to Phrynosoma orbiculare (Lacertilia: Iguanidae). Herpetologica 35: 116–124. https://www.jstor.org/stable/3891775
  • Myers N, Mittermeier RA, Mittermeier CG, de Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772): 853–858. https://doi.org/10.1038/35002501
  • Nevárez de los Reyes M, Lazcano D, García-Padilla E, Mata-Silva V, Johnson JD, Wilson LD (2016) The herpetofauna of Nuevo León, Mexico: Composition, distribution, and conservation. Mesoamerican Herpetology 3: 558–638.
  • Nevarez de los Reyes M, Lazcano D, Wilson LD (2019a) Geographic distribution: Gerrhonotus ophiurus. Herpetological Review 50: 328.
  • Nevarez de los Reyes M, Lazcano D, Centenero-Alcalá E, Eryan-Sánchez-Morales N, Serra-Ortíz MA, Wilson LD (2019b) Geographic distribution: Boa imperator. Herpetological Review 50: 528.
  • Nieto-Montes de Oca A, Castresana-Villanueva N, Canseco-Márquez L, Campbell JA (2022) A new species of Xenosaurus (Squamata: Xenosauridae) from the Sierra de Juárez of Oaxaca, Mexico. Herpetologica 78: 40–50. https://doi.org/10.1655/Herpetologica-D-21-00041.1
  • O’Connell KA, Smith EN (2018) The effect of missing data on coalescent species delimitation and a taxonomic revision of whipsnakes (Colubridae: Masticophis). Molecular Phylogenetics and Evolution 127: 356–366. https://doi.org/10.1016/j.ympev.2018.03.018
  • Ochoa-Ochoa LM, Munguía M, Lira-Noriega A, Sánchez-Cordero V, Flores-Villela O, Navarro-Sigüenza A, Rodríguez P (2014) Spatial scale and β-diversity of terrestrial vertebrates in Mexico. Revista Mexicana de Biodiversidad 85(3): 918–930. https://doi.org/10.7550/rmb.38737
  • Opermanis O, MacSharry B, Aunins A, Sipkova Z (2012) Connectedness and connectivity of the Natura 2000 network of protected areas across country borders in the European Union. Biological Conservation 153: 227–238. https://doi.org/10.1016/j.biocon.2012.04.031
  • Ortiz-Medina JA, Cabrera-Ceri DI, Nahuat-Cervera PE, Chablé-Santos JB (2020) New distributional records from the herpetofauna of Campeche and Yucatán, Mexico. Herpetological Review 51: 83–87.
  • Palacios-Aguilar R, Flores-Villela O (2020) Taxonomic revision and comments on two groups of the genus Coniophanes (Squamata: Dipsadidae). Vertebrate Zoology 70: 111–124. https://doi.org/10.26049/VZ70-2-2020-02
  • Palacios-Aguilar R, Santos-Bibiano R (2020) A new species of direct-developing frog of the genus Eleutherodactylus (Anura: Eleutherodactylidae) from the Pacific lowlands of Guerrero, Mexico. Zootaxa 4750(2): 250–260. https://doi.org/10.11646/zootaxa.4750.2.8
  • Palacios-Aguilar R, Santos-Bibiano R, Flores-Villela O (2018) A new species of Lepidophyma (Squamata: Xantusiidae) from the Pacific lowlands of Guerrero, Mexico. Journal of Herpetology 52(3): 327–331. https://doi.org/10.1670/17-061
  • Parra-Olea G, Rovito SM, García-París M, Maisano JA, Wake DB, Hanken J (2016) Biology of tiny animals: three new species of minute salamanders (Plethodontidae: Thorius) from Oaxaca, Mexico. PeerJ 4: e2694. https://doi.org/10.7717/peerj.2694
  • Pazos-Nava FN, Álvaro-Montego RI, Capul-Magaña FG, de Quevedo-Machain RG, Flores-Guerro US, Velasco JA, Escobedo-Galván AH (2019) First verified record of Anolis sagrei Cocteau in Duméril and Bibron, 1837 from the central Pacific Coast of Mexico. BioInvasions Records 8(3): 568–574. https://doi.org/10.3391/bir.2019.8.3.12
  • Pérez-Ramos E, Saldaña de La Riva L (2008) Morphological revision of lizards of the formosus group, genus Sceloporus (Squamata: Sauria) of southern México, with description of a new species. Bulletin of the Maryland Herpetological Society 44: 77–97.
  • Platz JE (1991) Rana berlandieri Baird, Rio Grande Leopard Frog. Catalogue of American Amphibians and Reptiles 508: 1–4.
  • Ramamoorthy TP, Bye R, Lot A, Fa J [Eds] (1993) Biological Diversity of Mexico: Origins and Distribution. Oxford University Press, Oxford, 856 pp.
  • Ramírez-Reyes T, Flores-Villela O (2018) Taxonomic changes and description of two new species from the Phyllodactylus lanei complex (Gekkota: Phyllodactylidae) in Mexico. Zootaxa 4407(2): 151–190. https://doi.org/10.11646/zootaxa.4407.2.1
  • Ramírez-Reyes T, Piñero D, Flores-Villela O, Vázquez-Domínguez E (2017) Molecular systematic, species delimitation and diversification patterns of the Phyllodactylus lanei complex (Gekkota: Phyllodactylidae) in Mexico. Molecular Phylogenetics and Evolution 115: 82–94. https://doi.org/10.1016/j.ympev.2017.07.008
  • Ramírez-Reyes T, Barraza-Soltero IK, Nolasco-Luna JR, Flores-Villela O, Escobedo-Galván AH (2021a) A new species of leaf-toed gecko (Phyllodactylidae, Phyllodactylus) from María Cleofas Island, Nayarit, Mexico. ZooKeys 1024: 117–136. https://doi.org/10.3897/zookeys.1024.60473
  • Ramírez-Reyes T, Flores-Villela O, Piñero D, Lathrop A, Murphy RW (2021b) Genomic assessment of the Phyllodactylus tuberculosus complex (Reptilia: Phyllodactylidae) in America. Zoologica Scripta 50(5): 529–542. https://doi.org/10.1111/zsc.12492
  • Rautsaw RM, Holding ML, Strickland JL, Castañeda Gaytán JJ, García González FC, Castañeda Gaytán JG, Borja Jiménez JM, Parkinson CL (2018) Geographic distribution: Hypsiglena tanzeri. Herpetological Review 49: 287.
  • Reyes-Velasco J, Adams RH, Boissinot S, Parkinson CL, Campbell JA, Castoe TA, Smith EN (2020a) Genome-wide SNPs clarify lineage diversity confused by coloration in coralsnakes of the Micrurus diastema species complex (Serpentes: Elapidae). Molecular Phylogenetics and Evolution 147: 106770. https://doi.org/10.1016/j.ympev.2020.106770
  • Rorabaugh JC, Lemos-Espinal JA (2016) A Field Guide to the Amphibians and Reptiles of Sonora, Mexico. ECO Herpetological Publishing and Distribution, Rodeo, 688 pp.
  • Sánchez-García F, García-Padilla E, Wilson LD, Mata-Silva V (2020) Gerrhonotus ophiurus. Mexico: Oaxaca. Herpetological Review 51: 776.
  • Sarukhán J, Urquiza-Haas T, Koleff P, Carabias J, Dirzo R, Ezcurra E, Cerdeira-Estrada S, Suberón J (2015) Strategic actions to value, conserve, and restore the natural capital of megadiversity countries: The case of Mexico. Bioscience 65(2): 164–173. https://doi.org/10.1093/biosci/biu195
  • Schätti B, Heimes P, Tillack F, Kucharzewski C, Torres-Pérez Coeto J (2020) Pituophis deppei (Duméril, Bibron & Duméril, 1854) or a reassessment of Mexican bullsnakes (Reptilia: Squamata: Colubridae). Vertebrate Zoology 70: 483–545. https://doi.org/10.26049/VZ70-4-2020-01
  • Shanas U, Galyun YA, Alshamlih M, Cnaani J, Guscio D(U), Khoury F, Mittler S, Nassar K, Shapira I, Simon D, Sulltan H, Topel E, Ziv Y (2006) Reptile diversity and rodent community structure across a political border. Biological Conservation 132: 292–299. https://doi.org/10.1016/j.biocon.2006.04.021
  • Sigala-Rodríguez JJ, Quintero-Díaz GE, Ahumada-Carrillo IT, Carrillo-Lara DE (2020a) Anfibios. In: La Biodiversidad en Zacatecas. Estudio de Estado. CONABIO, Mexico, 229–234.
  • Sigala-Rodríguez JJ, Quintero-Díaz GE, Ahumada-Carrillo IT, Carbajal-Márquez RA, Enríquez ED, Vacio de la Torre ME (2020b) Reptiles. In: La biodiversidad en Zacatecas. Estudio de Estado. CONABIO, Mexico, 235–240.
  • Smith GR, Lemos-Espinal JA (2015) Herpetofaunal diversity of the United States-Mexico border. In: Lemos-Espinal JA (Ed.) Amphibians and Reptiles of the US-Mexico Border States. Texas A&M University Press, College Station, 196–205.
  • Smith JR, Hendershot JN, Nova N, Daily GC (2020) The biogeography of ecoregions: Descriptive power across regions and taxa. Journal of Biogeography 47(7): 1413–1426. https://doi.org/10.1111/jbi.13871
  • Sosa-Tovar GH, García-Padilla E, Wilson LD, Mata-Silva V (2019) Geographic distribution: Hemidactylus mabouia. Herpetological Review 50: 746.
  • Streicher JW, Devitt TJ, Goldberg CS, Malone JH, Blackmon H, Fujita MK (2014) Diversification and asymmetrical gene flow across time and space: Lineage sorting and hybridization in polytypic barking frogs. Molecular Ecology 23(13): 3273–3291. https://doi.org/10.1111/mec.12814
  • Suazo-Ortuño I, Ramírez-Bautista A, Alvarado-Díaz J (2023) Amphibians and reptiles of Mexico: Diversity and conservation. In: Jones RW, Ornelas-García CP, Pineda-López R, Álvarez F (Eds) Mexican Fauna in the Anthropocene. Springer Nature Switzerland, Cham, 105–127. https://doi.org/10.1007/978-3-031-17277-9_6
  • Tellez O, Mattana E, Diazgranados M, Kühn N, Castillo-Lorenzo E, Lira R, Montes-Leyva L, Rodriguez I, Flores Ortiz CL, Way M, Dávila P, Ulian T (2020) Native trees of Mexico: Diversity, distribution, uses and conservation. PeerJ 8: e9898. https://doi.org/10.7717/peerj.9898
  • Tepos-Ramírez M, Flores-Villela O, Velasco JA, Pedraza Lara C, García Rubio OR, Jadin RC (2021) Molecular phylogenetics and morphometrics reveal a new endemic jumping pitviper (Serpentes: Viperidae: Metlapilcoatlus) from the Sierra Madre Oriental of Mexico. Journal of Herpetology 55(2): 181–191. https://doi.org/10.1670/20-028
  • Terán-Juàrez SA, García-Padilla E, Mata-Silva V, Johnson JD, Wilson LD (2016) The herpetofauna of Tamaulipas, Mexico: Composition, distribution, and conservation status. Mesoamerican Herpetology 3: 43–113.
  • Trageser SJ, Schell RA (2018) Geographic distribution: Marisora brachypoda. Herpetological Review 49: 504.
  • Valencia-Herverth R, Fernández-Badillo L, Valencia-Herverth J (2020) Geographic distribution: Terrapene mexicana. Herpetological Review 51: 537–538.
  • Villaseñor JL, Ortiz E, Delgadillo-Moya C, Juárez D (2020) The breadth of the Mexican Transition Zone as defined by its flowering plant genetic flora. PLoS ONE 15(6): e0235267. https://doi.org/10.1371/journal.pone.0235267
  • Webb RG (2001) Frogs of the Rana tarahumarae group in western Mexico. In: Johnson JD, Webb RG, Flores-Villela O (Eds) Mesoamerican Herpetology: Systematics, Zoogeography and Conservation. University of Texas at El Paso, El Paso, 20–43.
  • Woolrich-Piña GA, Ponce Campos P, Loc-Barragán J, Ramírez-Silva JP, Mata-Silva V, Johnson JD, García-Padilla E, Wilson LD (2016) The herpetofauna of Nayarit, Mexico: Composition, distribution, and conservation. Mesoamerican Herpetology 3: 376–448.
  • Woolrich-Piña GA, García-Padilla E, DeSantis DL, Johnson JD, Mata-Silva V, Wilson LD (2017) The herpetofauna of Puebla, Mexico: Composition, distribution, and conservation status. Mesoamerican Herpetology 4: 791–884.
  • Zaldivar-Riverón A, León-Regagnon V, Nieto-Montes de Oca A (2004) Phylogeny of the Mexican coastal leopard frogs of the Rana berlandieri group based on mtDNA sequences. Molecular Phylogenetics and Evolution 30(1): 38–49. https://doi.org/10.1016/S1055-7903(03)00141-6
login to comment