Conservation In Practice |
Corresponding author: Giuseppe Maria Carpaneto ( giuseppe.carpaneto@uniroma3.it ) Academic editor: Pavel Stoev
© 2017 Giuseppe Maria Carpaneto, Alessandro Campanaro, Sönke Hardersen, Paolo Audisio, Marco Alberto Bologna, Pio Federico Roversi, Giuseppino Sabbatini Peverieri, Franco Mason.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Carpaneto GM, Campanaro A, Hardersen S, Audisio P, Bologna MA, Roversi PF, Sabbatini Peverieri G, Mason F (2017) The LIFE Project “Monitoring of insects with public participation” (MIPP): aims, methods and conclusions. In: Carpaneto GM, Audisio P, Bologna MA, Roversi PF, Mason F (Eds) Guidelines for the Monitoring of the Saproxylic Beetles protected in Europe. Nature Conservation 20: 1-35. https://doi.org/10.3897/natureconservation.20.12761
|
The Life Project “Monitoring of insects with public participation” (LIFE11 NAT/IT/000252) had as the main objective to develop and test methods for the monitoring of five beetle species listed in the Annexes of the Habitats Directive (92/43/EEC): Osmoderma eremita (hermit beetle, Scarabaeidae), Lucanus cervus (European stag beetle, Lucanidae), Cerambyx cerdo (great capricorn beetle, Cerambycidae), Rosalia alpina (rosalia longicorn, Cerambycidae) and Morimus asper/funereus (morimus longicorn, Cerambycidae). The data gathered represent an important contribution to the monitoring of these target species in Italy. The methods developed for monitoring of the target species are intended for use by the local management authorities and staff of protected areas. These developed methods are the result of extensive fieldwork and ensure scientific validity, ease of execution and limited labour costs. The detailed description of methods and the results for each species are published in separate articles of this special issue of Nature Conservation. A second objective of the project was to gather faunistic data with a Citizen Science approach, using the web and a mobile application software (app) specifically built for mobile devices. The validation of the records collected by the citizens was carried out by experts, based on photographs, which were obligatory for all records. Dissemination activities represented the principal way to contact and engage citizens for the data collection and also offered the possibility of providing information on topics such as Natura 2000, the Habitats Directive, the role of monitoring in nature conservation, the importance of forest ecosystems and the ecological role of the saproxylic insects. An innovative method tested during the project was the training of a dog for searching and monitoring the elusive hermit beetle; the trained dog also added a “curiosity” factor to attract public attention towards this rare insect and the issues mentioned above.
Saproxylic beetle monitoring, Insect conservation, Forest biodiversity, Habitats Directive, Citizen Science, LIFE Nature Project
The inaugural meeting of the International Union for Protection of Nature (IUPN, later renamed IUCN), held in 1948, began to set up instruments to monitor the status of animals and plants worldwide. Over subsequent years, the monitoring of habitats and species became a core activity of nature conservation across the planet and an important chapter of conservation biology (
Monitoring programmes range from small scale, local programmes, to large-scale, national and international programmes (Schmeller et al. 2012), and from simple field surveys to complex procedures which require a considerable budget to cover staff costs, as well as expensive material and equipment. Moreover, governmental and local budgets allocated to biodiversity conservation are often scarce, and gathering data exclusively by professionals may not be possible. The management authorities often turn to volunteers, such as local naturalists coordinated by a small team of professionals. In these cases, citizen science offers an additional way for the monitoring of living organisms (
The Habitats Directive, which has gone through a number of updates and corrections, mainly to the annexes, ensures the conservation of a wide range of rare, threatened or endemic animal and plant species (as listed in Annex II, IV and V), as well as some 200 rare and characteristic habitats (as listed in Annex I). The current species lists in Annexes II and IV have a dominant proportion of vertebrates and very few arthropods (of which only eleven are priority species) (
Monitoring of conservation status is an obligation arising from Article 11 of the Habitats Directive for all habitats and species of Community interest. Consequently, this provision is not restricted to Natura 2000 sites and data should be collected both in and outside the Natura 2000 network to achieve a full assessment of the conservation status of the species. The main results of this monitoring should be reported to the Commission every six years according to Article 17 of the Directive. In Italy, as in many other countries, population trends for most of the insect species listed in the Annexes are currently unknown as coordinated monitoring programmes are lacking (
Saproxylic organisms depend on decaying wood of moribund or dead trees (standing or fallen), or upon the presence of other saproxylic species at least during some phases of their life-cycle (
The order Coleoptera is the most species rich taxon worldwide and gives a relevant contribution to saproxylic biodiversity (
As European forests have suffered from intensive wood exploitation by man for several centuries, most of the managed forests contain very little dead wood and low levels of biodiversity. Nevertheless, a slight increase in both deadwood and biodiversity has been observed in the last decades, probably due to the current policies of environmental protection in European countries (
Many factors are threatening saproxylic insects, particularly the large saproxylic beetles (LSB), such as stag beetles, hermit beetles and other fruit chafers, rosalia and great capricorn, to which this special issue and the MIPP project were dedicated. These species, owing to their great body size, need a larger volume of dead wood in aggregate form, i.e. in the same tree, for successful larval development. Consequently, their body size limits the abundance of their populations and makes them easily detectable by mammal and bird predators as well as by people. The major threats to saproxylic beetles are the fragmentation and/or structural simplification of woodlands, as well as the loss of suitable microhabitats. In particular, the so called habitat trees, i.e. standing live or dead trees represent a fundamental resource for saproxylic beetles, providing ecological niches and microhabitats, such as cavities, bark pockets, large dead branches, cracks, sap runs or trunk rot (
The first methods for monitoring some LSB in Italy were published by
The Life Project “Monitoring of insects with public participation” (LIFE11 NAT/IT/000252) (hereafter: MIPP) started on 1/10/2012 and will end in 30/09/2017 (
The MIPP Project had, as first objective, to develop and test methods for the monitoring of five species of saproxylic beetles listed in Annexes II and IV of the Habitats Directive: Lucanus cervus (Linnaeus, 1758), Osmoderma eremita (Scopoli, 1763), Cerambyx cerdo Linnaeus, 1758, Rosalia alpina (Linnaeus, 1758) and the complex Morimus asper asper (Sulzer, 1776) / Morimus asper funereus Mulsant, 1863. The guidelines presented in separate contributions of this special issue of Nature Conservation are the result of extensive fieldwork carried out in order to develop readily standardised methods which ensure scientific validity, ease of execution and limited labour costs for monitoring the above mentioned species. These methods were developed for use by local management authorities, staff of protected areas and the conservation community at large, to gather raw data for assessing the status of the species every six years. The standardised methods developed by the MIPP staff resulted in quantitative data collected from various sites, using traps and/or lures, mark-recapture techniques, transects and, in some cases, genetic analyses. For Osmoderma eremita, the most elusive of these species, a dog was trained to search for the larvae of this beetle. In the last few decades, conservation dogs have been used for an array of activities, including detection of a large variety of taxonomic groups (
A second objective of the project was to apply a Citizen Science approach (
A relevant component of the project was dissemination and communication which were used to inform people on issues such as Natura 2000, the Habitats Directive, the monitoring activities and the ecological role of the saproxylic insects within the forest ecosystems. The dog trained for the monitoring of the hermit beetle, was also used as a “curiosity” factor to attract public attention towards this rare beetle and the issues mentioned above.
The target taxa selected for the MIPP Project are listed in Table
As deduced from Table
Target taxa (species and subspecies) of the MIPP Project, with indications on: taxonomic arrangement (valid scientific names, author and year of description, order and family to which taxa are currently assigned); Annexes of the Habitats Directive where the taxa are listed (II and/or IV); MIPP objectives where taxa were involved (CZ: Citizen Science; TM: test of monitoring methods); study areas where monitoring methods have been tested for saproxylic taxa (BF: Bosco della Fontana, BM: Bosco della Mesola, FC: Foreste Casentinesi, PA: Parco Nazionale d’Abruzzo, Lazio e Molise, PG: Parco Naturale Regionale delle Prealpi Giulie).
Taxon, author and year of description | Order | Family | Annex HD | MIPP objectives |
Study areas |
---|---|---|---|---|---|
Saga pedo Pallas, 1771 | Orthoptera | Tettigoniidae | IV | CZ | |
Parnassius apollo (Linnaeus, 1758) | Lepidoptera | Papilionidae | IV | CZ | |
Zerynthia cassandra (Geyer, 1828) Zerynthia. polyxena (Denis and Schiffermüller, 1775) |
Lepidoptera | Papilionidae | IV | CZ | |
Lopinga achine (Scopoli, 1763) | Lepidoptera | Nymphalidae | IV | CZ | - |
Lucanus cervus (Linnaeus, 1758) | Coleoptera | Lucanidae | II | CZ, TM | BF, FC |
Osmoderma eremita eremita (Scopoli, 1763) Osmoderma eremita italicum Sparacio, 2000 Osmoderma cristinae Sparacio, 1994 |
Coleoptera | Scarabaeidae | *II, IV | CZ, TM | PA, FC |
Cerambyx cerdo Linnaeus, 1758 | Coleoptera | Cerambycidae | II, IV | CZ, TM | BF, BM |
Rosalia alpina (Linnaeus, 1758) | Coleoptera | Cerambycidae | *II, IV | CZ, TM | PA, FC |
Morimus asper asper (Sulzer, 1776) Morimus asper funereus Mulsant, 1863 |
Coleoptera | Cerambycidae | II | CZ,TM | BF / PG |
The saproxylic beetles (Lucanus, Osmoderma, Cerambyx, Rosalia and Morimus) have been used for both the main objectives of the project: 1) the definition of a standardised method for the monitoring of the species in Europe, in agreement of the criteria identified in the former chapter and 2) the collection of data on their distribution, altitude and phenology in Italy, through a Citizen Science approach. On the contrary, the butterflies (Parnassius, Zerynthia and Lopinga) and the bush cricket (Saga pedo) were used only for the second objective. Details of the Citizen Science approach are given by
The target species of saproxylic beetles were selected as they share the following characteristics: (1) are listed in the Annexes II and/or IV of the Habitats Directive, (2) have a large body size, (3) are relatively easy to identify, (4) lack well tested monitoring methods, (5) depend on dead wood for completing their life cycle and (6) live in different and representative micro-habitats of dead wood food-chains. These species are briefly introduced in the following.
The target species of saproxylic beetles monitored by the Life MIPP Project. A Lucanus cervus (Photo by Fabio Garzuglia) B Osmoderma eremita (Photo by Francesco Lemma) C Morimus asper funereus (Photo by Kajetan Kravos) D Cerambyx cerdo (Photo by Elia Ferro) E Rosalia alpina (Photo by Sӧnke Hardersen).
Lucanus cervus (English name: European stag beetle): it lives in deciduous woodlands and flies at sunset. Larvae feed on dead wood in contact with the ground, e.g., under logs and stumps, or in senescent tree roots. Biology, ecology and monitoring methods of this species are treated in detail by
Osmoderma eremita (English name: hermit beetle) and its derived taxa: a typical inhabitant of old tree hollows. Larvae dig and feed into the walls of the cavities or in the wood mould settled at the bottom of the tree. The adult is very elusive. Biology, ecology and monitoring methods of this species are discussed in detail by
Cerambyx cerdo (English name: great capricorn beetle): nocturnal adults fly after sunset. Larvae live inside the decaying wood of large, old trees (especially oaks), often exposed to the sun. Biology, ecology and monitoring methods of this species are discussed in detail by
Rosalia alpina (English name: rosalia longicorn): diurnal adults often seen on the bark of old beech trees. Larvae typically develop in the wood of large beech trees often in other accompanying broadleaf species. Biology, ecology and monitoring methods of this species are discussed in detail by
Morimus asper funereus and Morimus asper asper (English name: morimus longicorn): originally only the first taxon had been included in Annex II of the Habitats Directive as a valid species (Morimus asper). A recent genetic study (
The methods for monitoring the target species were tested in five areas, mostly managed by CUTFAA. All areas investigated are an integral part of the Italian Natura 2000 network (SCIs and SPAs), and the data gathered represent an important contribution to the monitoring of the target species in Italy. See Table
Study areas where the monitoring methods were tested during the MIPP fieldwork.
Macro-areasand their acronyms | Physical geography | Administrative Region | Subareas (study sites) | Altitudem a.s.l. | Coordinates (Decimal Degrees) |
---|---|---|---|---|---|
Parco Naturale Regionaledelle Prealpi Giulie (PG) | Eastern Alps | Friuli-Venezia Giulia | Starmiza di Resia | 750–850 | 46.3435-46.3414°N, 13.2994-13.3078°E |
Bosco della Fontana (BF) | Po River Valley | Lombardia | 19–25 | 45.2003°N, 10.7408°E | |
Bosco della Mesola (BM) | Po River Delta | Emilia-Romagna | 0–2 | 44.8485°N, 12.2511°E | |
Foreste Casentinesi (FC) | Tuscan-Emilian Apennines | Emilia-Romagna | Rifugio La Lama and its surroundings | 700–900 | 43.4312°N, 11.8381°E |
Toscana | Camaldoli | 820–870 | 43.7874°N, 11.8208°E | ||
Parco Nazionale d’Abruzzo, Lazio e Molise (PA) | South-central Apennines | Abruzzo | Difesa di PescasseroliVal Fondillo | 1234–1352, 1090–1216 | 41.8461°N, 13.8600°E, 41.7841°N, 13.9563°E |
Zio Mas | ca 1030 | 42. 0802°N, 14.0566°E | |||
Feudo Intramonti e Colle di Licco | ca 1030 | 41.7818°N, 13.8974°E |
The Parco Naturale Regionale delle Prealpi Giulie (=Julian Prealps Natural Park) covers 9,400 hectares and lies at the boundary between the Julian Alps and the Julian Prealps, close to the Slovenian border. The park is a mountainous system which ranges from 300 to 2587 m a.s.l. and is divided into two main catchment areas. It is part of the two Special Areas of Conservation (SAC): IT3320012 (Prealpi Giulie Settentrionali) and IT3321002 (Alpi Giulie). Beech forests occur up to around 850 m a.s.l. and are replaced by Pinus mugo stands above 1400 m. The southern flanks of the mountains, characterised by poor soils and relatively high temperatures, are dominated by Ostrya carpinifolia and Fraxinus ornus. Other important formations present in the Park are forests of black pine (Pinus nigra) and Scots pine (P. sylvestris). The research for the MIPP project was carried out in the forest near to Starmiza di Resia (between 46.3435°N, 13.2994°E and 46.3414°N, 13.3078°E).
This area (750–850 m a.s.l.) is managed by shelterwood cutting and dead wood is removed. It resulted in young and even-aged beech trees and was poor in dead wood. However, owing to the local very steep morphology, dead wood occurs in small and isolated pockets of forests, favoured by limited accessibility or avalanches. Although the Park hosts populations of Lucanus cervus, Rosalia alpina and Morimus asper funereus, monitoring methods were only tested for the latter.
The Riserva Naturale Biogenetica Bosco della Fontana [=Bosco Fontana Nature Reserve] is located in the province of Mantova [Mantua], at an altitude of 19 to 25 m a.s.l. Bosco Fontana (45.200299°N, 10.740841°E) is a site of the Natura 2000 network (IT20B0011), managed by the Ufficio Territoriale Carabinieri per la Biodiversità di Verona [= Territorial Office of Carabinieri for Biodiversity of Verona]. It covers an area of 233 ha, of which 198 ha represent one of the last remnants of the ancient lowland broadleaf forests (with Quercus robur and Carpinus betulus) of the Po Valley (
The Riserva Naturale Bosco della Mesola [= Bosco della Mesola Nature Reserve] is managed by the Ufficio Territoriale Carabinieri per la Biodiversità di Punta Marina [= Territorial Office of Carabinieri for Biodiversity of Punta Marina] and covers an area of 1500 hectares. The Reserve, which is part of the Natura 2000 network (IT 4060006) and of the Regional Park of the Po Delta, is located in the Province of Ferrara about 16 km from the Adriatic coast. This forest is a coastal lowland woodland of high importance for conservation, dominated by holm oak (Quercus ilex) and pedunculate oak (Quercus robur). Other important tree species occurring in the area are hornbeams (Carpinus betulus and C. orientalis), ashes (Fraxinus angustifolia and F. ornus), poplars (Populus alba, P. tremula, P. nigra) and field elm (Ulmus minor). The understory is scarce and the most abundant species are common hawthorn (Crategus monogyna) and wild privet (Ligustrum vulgare). Between 1945 and 1971, non-native trees were planted, such as stone pine (Pinus pinea) and maritime pine (Pinus pinaster). The abandonment of traditional management of the forest since the 1970s has resulted in an increase in dead wood which is now very abundant. The research conducted during the MIPP project in the Bosco della Mesola (44.8485°N, 12.2511°E) was focused on testing the monitoring methods for C. cerdo and M. asper asper.
The Foreste Casentinesi [Casentine Forests] are natural and historical forest areas located in the Tuscan-Emilian Apennines, within the Parco Nazionale delle Foreste Casentinesi, Monte Falterona e Campigna [= Foreste Casentinesi, Monte Falterona and Campigna National Park]. The research was carried out in two areas managed by the Ufficio Territoriale Carabinieri per la Biodiversità di Pratovecchio [= Territorial Office of Carabinieri for Biodiversity of Pratovecchio]: the Lama Forest and adjacent zones which are part of the Natura 2000 network (IT 4080001) and the chestnut stand Foreste di Camaldoli, Badia Prataglia (IT 5180018). The core area of the Casentine forests is the area of Sasso Fratino (764 ha), where cuts have been abandoned for more than 100 years. This forest is amongst the most natural woodlands of western Europe and consist of beech woods, mixed stands of silver fir and beech, and mixed deciduous broadleaf forests. Beech forests are widespread in the Park from 600–700 m up to 1,700–1,800 m a.s.l. Although their composition varies with altitude, they are mostly dominated by beech (Fagus sylvatica) and harbour a number of associated trees such as sycamore maple (Acer pseudoplatanus), European ash (Fraxinus excelsior), whitebeam (Sorbus aria), alpine laburnum (Laburnum alpinum) and rowan (Sorbus aucuparia). The mixed deciduous broadleaf forests are widespread throughout sub-montane areas and represent the most diverse tree association of the Apennines, with various combinations of manna ash (Fraxinus ornus), Turkey oak (Quercus cerris), downy oak (Quercus pubescens), Italian maple (Acer opalus), Norway maple (Acer platanoides), European hop-hornbeam (Ostrya carpinifolia), large-leaved lime (Tilia platyphyllos), common laburnum (Laburnum anagyroides), wild cherry (Prunus avium) etc. Finally, near to human settlements, e.g. near the Monastery of Camaldoli, there are some very old stands of Castanea sativa which are managed as coppice or chestnut orchards. The Forests of the Park are home to at least four species of saproxylic beetles investigated by the project: L. cervus, O. eremita, R. alpina and M. asper asper. Monitoring methods were tested only for the first three species in the transitional belt between beech forest and mixed deciduous broadleaf forest, at an altitude of 700 to 900 m a.s.l., in several sites around the Lama Forest refuge (43.4312°N, 11.8381°E) , i.e. Poggio Ghiaccione, Poggio Piano, La Vetreria, and the road to Badia. Only O. eremita was also monitored in the old chestnut orchard near to Camaldoli (43.7874°N, 11.8208°E) at an altitude of 820–870 m a.s.l.
Foreste Casentinesi: old chestnut orchards where a population of Osmoderma eremita was discovered for the first time by the MIPP researchers (Photo by Sӧnke Hardersen).
Within the Parco Nazionale d’Abruzzo, Lazio e Molise [=Abruzzi, Lazio and Molise National Park], centred in the southern part of the Abrutian Apennines, surveys for the MIPP project have been carried out at four sites: “Difesa di Pescasseroli” (41.8461°N, 13.8600°E), “Val Fondillo” (41.7841°N, 13.9563°E), “Riserva Naturale Orientata Feudo Intramonti e Colle di Licco” (41.7818°N, 13.8974°E) and “Zio Mas” (42.0802°N, 14.0566°E). The first two areas (Difesa di Pescasseroli and Val Fondillo) are managed by the Park, while the other two (Zio Mas and Feudo Intramonti) are run by the Ufficio Territoriale Carabinieri per la Biodiversità di Castel di Sangro [= Territorial Office of Carabinieri for Biodiversity of Castel di Sangro] (province of L’Aquila). Difesa di Pescasseroli and Val Fondillo are located near Pescasseroli (province of L’Aquila), at an altitude of 1234–1352m and 1090–1216m respectively and consist of a mosaic of mature and old-growth forests dominated by beech (Fagus sylvatica) and its associated tree species, such as sycamore maple (Acer pseudoplatanus), European ash (Fraxinus excelsior), whitebeam (Sorbus aria), hornbeam (Carpinus betulus), yew (Taxus baccata) etc. Beech forests cover more than 60% of the Park surface and harbour very old trees, due to the limited accessibility of some steep mountainsides or to the presence of nature reserves where all exploitation of resources is strictly forbidden. Zio Mas and Feudo Intramonti e Colle di Licco are located at an altitude around 1030 m, near to Casone Crugnale, in mesophilous deciduous forests. Monitoring methods were tested only for O. eremita and R. alpina.
In order to develop and test the most appropriate monitoring methods, all relevant literature was reviewed in order to select the most suitable approaches to be tested for the monitoring of the target species. In Action A1 of the project MIPP, these methods were critically reviewed and the reviews were sent to 15 experts from other European countries for critical examination. Comments were received from renowned specialists and their advice considerably improved the reviews. Based on these documents, a work plan was developed for the years 2013–2017 in collaboration with the Region Lombardy (Action A2) and the appropriate statistical approaches were selected. It became obvious that the suitability of the statistical approach was influenced by many variables, e.g. local population structure. Whereas an abundant and evenly distributed population of M. asper at Bosco della Fontana allowed the adoption of an approach based on randomisation, a clustered population structure, as observed in the Julian Prealps, called for a randomised block design. The target parameters to be monitored were always the number of individuals detected in relation to a given effort. It has been shown that such counts are often highly correlated with estimates of population sizes in insects (e.g.
The large amount of field work carried out for the development of the monitoring methods was only possible because many people helped the project staff. Many field assistants from various countries joined the team during the field work. A total of 10 Theses for Bachelor, Master and PhD degrees (see names in Acknowledgements) were written in collaboration with the project MIPP, the contribution by some of these students being crucial for the field work as well. The final aim of the fieldwork was to develop methods which ensure scientific validity, ease of execution and low cost. Obviously, the methods published are compromises as, particularly for small populations, it is difficult to balance limited labour costs and high detection probability. The results of the field work were analysed statistically, with a large variety of approaches, always with the aim of comparing the different methods tested and defining the best possible monitoring method.
A special permit was obtained from the Italian Ministry of Environment for handling and capturing individuals of the target species (collection permit: Ministero dell’ambiente e della Tutela del Territorio e del Mare – DG Protezione della Natura e del Mare, U.prot PNM 2012-0010890 del 28/05/2012).
Different methods have been used for either detecting the target species (to assess their presence in the areas) or monitoring their populations (to develop a suitable technique for non-expert operators).
L. cervus was counted along 500m linear transects at dusk (15min before and after sunset), using both sightings and net captures in two study sites, Bosco Fontana and Foresta della Lama. At Bosco Fontana, stag beetle remains from bird predation were collected by day along transects, while aerial traps, baited with wine and/or beer with sugar or banana juice, were set in trees at different heights from the ground. Details on methods are reported by
Osmoderma eremita was lured by pheromone traps (BCWT) and unbaited pitfall traps (PT) in three study sites of the Abruzzi, Lazio and Molise National Park (Difesa di Pescasseroli, Val Fondillo and Feudo Intramonti- Colle di Licco) and in two sites of the Casentine Forests (Lama Forest and Monastery of Camaldoli). Larvae were searched for with the aid of the trained dog (Osmodog subproject) in several sites of all macro-areas. Details on methodologies are reported by
Cerambyx cerdo was monitored in Bosco della Fontana and Bosco della Mesola, by four methods: using attractant for adults i.e. ash sap in feeding stations on trees; setting aerial traps baited with fermented mixtures of wine, beer, banana or sugar; detecting the adults during Visual Encounter Surveys (VES); and collecting remains along transects. Details on methods are reported by
Rosalia alpina was monitored in several beech forest sites of the Foreste Casentinesi and of Abruzzo, Lazio and Molise National Park. Methods consisted of detecting adults during visual surveying of single logs or groups of logs; and searching on artificial tripods made from beech woods. Trees were considered suitable for these beetles when characterised by the presence of dead wood on the trunk and exposed to direct sun light for at least 1–2 hours. Logs consisted of beech trunks with diameters of 28–75cm. Tripods consisted of 3 beech logs (diameters 20–25cm) and were placed in open areas with easy access (along forest roads or clearings) at a minimum distance of 30m from each other. Details on methodologies are reported by
Morimus asper was monitored in the Julian Prealps (M. asper funereus) and Bosco della Fontana (M. asper asper) by using freshly cut log piles and pitfall traps baited with chemical compounds. Between 2014 and 2016, the influence of the characteristics of logs (e.g. diameter, age of wood, tree species) on the number of adults observed has been evaluated. Additionally, the attraction of chemical compounds for the species was assessed. Details on methods are reported by
Faunistic data were collected with the Citizen Science action developed within the LIFE MIPP Project using a website and an app for mobile devices, with an attempt being made to involve the highest number of persons possible. All data were validated by experts, based on pictures taken by citizens.
The dog, a Golden Retriever named “Teseo”, was chosen from a stock selected for the CITES Service of the former CFS (today: CUTFAA) and trained under the supervision of experienced staff. Originally, it was hypothesised to exploit the fact that males of O. eremita release large quantities of a sex pheromone which even humans can smell. However, after consulting with the Department of Forest Protection of the Austrian Research Centre for Forests, which has for many years trained scent detection dogs for the longhorn beetle Anoplophora glabripennis, it was decided to focus the training on the larvae of the hermit beetle. The reasons for this decision were: 1) Larvae of saproxylic beetles have a species-specific scent (
For each target species, the MIPP research staff identified a monitoring method judged to be the “best method” for detecting changes in occurrence and abundance of a population over time, according to the following criteria: scientific validity, high number of detected or captured individuals, ease of execution, low level of invasiveness and low cost.
For Lucanus cervus, the selected method consisted of walking at dusk, along a standard length transect (500m long and 10m width) and counting all adults of stag beetles seen flying or walking on the ground. This transect walk was carried out by one operator, from 15 minutes before sunset to 15 minutes after sunset. Overall, a transect walk lasted 30 minutes. The transect was divided into 5 sectors of 100 m; each sector had to be walked in 6 minutes. Transects were chosen along forest paths, tracks or roads with acceptable light conditions at dusk and with a suitable canopy openness. Details on the method are reported by
For O. eremita, the selected method for monitoring was based on black cross window traps (BCWT) baited with the sex pheromone of the species and hung on tree branches. Traps had to be checked every second day to prevent the animal from dying. In order to minimise disturbance of reproductive activity and behaviour, this monitoring was undertaken no more frequently than every three years. As an alternative method, a high number (at least 150) of pitfall traps (PT) could be placed into the same number of tree cavities. Although this method is cheaper and less invasive (as no pheromones interfere with the breeding activities), it may be used only in areas where tree hollows are very abundant and rich in wood mould. Additionally, the team needed to be composed of several people in order to ensure the checking of so many traps every two days. Details on traps and problems related to the sampling methods of this elusive species are reported by
For C. cerdo, the selected method is the use of purpose-made aerial traps composed of two stacked plastic containers embedded together one above the other with a wire insect net between them. Traps should be positioned on tree branches (especially oaks with a diameter larger than 50cm), at a height of 10m above ground and baited with red wine, white wine and sugar. Ten traps were positioned in each sampling area and needed to be checked every day. Details on traps and protocol are reported by
For R. alpina, the selected method consisted of surveying 15 beech trees with a large diameter (over 30cm), dead or rich in deadwood and exposed to the sun, these being the natural breeding habitat of the species. The results showed that the use of artificial wood baits (tripods) or logs specifically placed for monitoring did not represent practical alternatives. Details on results are reported by
For M. asper, selected method consisted of building and checking freshly cut wood piles which functioned as an attractant for the adults of this species. Each pile was built from single tree species, using wood with a diameter larger than 12cm. The tree species used for building the piles needed to be chosen carefully and the preferred trees seemed to be hardwood species such as beech and oaks. Details on results are reported by
A total number of 2,308 records were transmitted to the project database by a total of 695 citizens. The high rate of correct validations (73%) confirmed that the majority of the data collected by volunteers was correct. The number of annual records constantly grew from 2014 to 2016 as did the number of participants. The species most commonly recorded was L. cervus, followed by M. asper and R. alpina. The records, collected by the citizen science approach, allowed detailed analysis of altitudinal distribution and phenology of the target species, particularly for those with the highest numbers of records. These data were in line with the phenology and altitudinal distribution published by authors of scientific publications on the subject. For four species it was also possible to analyse how phenology changed with increasing altitude and it was found that peak activity was delayed by 10 days on average when moving 400m upwards.
For each field session, the dog was able to work for about 50 minutes, after which it needed to rest for 15 to 60 minutes before restarting its work. High temperatures caused a general decrease in the dog’s working ability. At the end of the training, Teseo learnt to signal exclusively for the larvae of O. eremita even though it sometimes showed some faint reactions to the larvae of other species such as Oryctes nasicornis and Gnorimus variabilis (e.g., by sitting adjacent to the source of the odour or barking weakly). The results of the tests showed that the use of a trained dog to find hermit beetle larvae is better than the traditional wood mould sampling. In fact, the dog showed a higher degree of success in detecting colonised trees (over 70%) in two areas formerly checked with wood mould sampling (up to 50%) (Chiari et al. 2014). Furthermore, the use of a dog was much less time consuming than wood mould sampling: Teseo, during a day with good weather conditions, was able to detect larvae of O. eremita with high accuracy and employed less than one tenth of the time needed for wood mould sampling. In addition, the use of a dog eliminated the risk of harming larvae and the fragile equilibrium of its microhabitat where a whole biocoenosis of saproxylic organisms occurs.
Participation by children in environmental education programmes seems to have a great impact on their attitude and behaviour. Some studies have shown that children who participate in such programmes are more concerned about nature, want to learn more about environmental issues and are more prone to follow pro-environmental behaviour (e.g. waste recycling) than children who did not participate (see
Dissemination activities with children: digging into dead wood and handling beetles (Photo by Michela Maura).
In the MIPP project, a specific education activity, named “MIPP-iacciono gli insetti” [literal translation: I like insects] for young people from primary to high school, was developed and carried out in several regions of Italy. One of the objectives of the project was to perform 60 activities (lessons) per year and involve 3000 students. The aims of the activity were to disseminate information related to the protection and conservation of old forest and dead wood and to allow children to learn about saproxylic insects. “MIPP-iacciono gli insetti” started with an interactive discussion stimulated by a variety of pictures of old and artificial forests, dead wood and saproxylic insects. After this, children were encouraged to learn how to identify the target insects of the MIPP project, by using their sense of hearing, sight and smell. In particular, during the game of “smell” they impersonated Teseo, the dog, by sniffing a series of smells and guessing that of Osmoderma eremita.
Other educational activities for young people from primary to high school performed during the MIPP project included guided tours in natural reserves, where particular attention was paid to old forests, dead wood and saproxylic insects.
The Life Project MIPP was a challenge from many points of view: collaborating between different institutions, coordinating a large amount of field work in five study areas, developing monitoring methods for cryptic and elusive species, organising a citizen science project to increase the knowledge on the distribution of rare and protected insects, educating people on biodiversity and Natura 2000 and on the importance of veteran trees in forest ecosystems, etc. Due to the goodwill and hard work of many people, obstacles and hurdles were overcome and the project managed to complete all planned actions successfully. The articles in this special issue provide the scientific results on testing monitoring methods and the detailed presentation of the method which resulted in being the most appropriate in terms of costs and accuracy for monitoring the conservation status of the five saproxylic beetles targeted by the project. Two of these articles have been dedicated respectively to the successful results of two subprojects: the citizen science and the training of a dog for detecting O. eremita in the field.
The results on monitoring methods showed that the management authorities can be able to provide the six-year report requested by the Habitats Directive on the five saproxylic species listed in the Annexes, by means of simple, efficient and low cost methods and procedures. Moreover, they can easily obtain the help of Master’s students and PhD scholars from several universities where saproxylic insect ecology is the subject of local research groups. A ‘symbiotic relationship’ or simply mutual support can be developed between research institutions and conservation authorities with reciprocal benefits. Many students and scholars are available to work for free in monitoring threatened species in order to get data for their theses, vocational training, internship at a protected area or research project. The management authorities can provide these helpers with logistical support, e.g., transportation inside the protected area on off-road vehicles (if necessary), rangers as guides, accommodation in refuges or local guest-rooms. Simple and basic cottages with bunk beds for scholars and volunteers should be one of the first actions to be made for improving scientific research and monitoring in a protected area. With regards to the use of the data collected every year on the populations of the target species (i.e. number of specimens recorded in each area by each method per day/week/month/total), each country should delegate a ministerial office or other governmental agency to gather this precious information in a simple database and this should be published on line, in an official site, with access reserved for the scientific community.
We are grateful to the staff of the Comando Unità Tutela Forestale Ambientale e Agroalimentare Carabinieri (CUTFAA, formerly CFS) for the active participation to MIPP actions, help during the fieldwork and local facilities. In particular, we thank: Ufficio Territoriale Carabinieri per la Biodiversità di Verona (Liana Fedrigoli, Fabio Mazzocchi, Emma Minari, Vincenzo Andriani), Ufficio Territoriale Carabinieri per la Biodiversità di Punta Marina (Giovanni Nobili), Ufficio Territoriale Carabinieri per la Biodiversità di Pratovecchio (Silvia Bertinelli, Ester Giovannini, Angelo Lamberti, Sandro Aurelio Marsella, Valerio Mazzoli, Marcello Padula, Matteo Padula, Barbara Rossi, Giovanni Quilghini, Antonio Zoccola), Ufficio Territoriale Carabinieri per la Biodiversità di Castel di Sangro (Tiziana Altea, Federica Desprini, Lucia Eusepi, Mario Romano). Special thanks are given to Mara Tisato and Massimo Lopresti (Ufficio Territoriale Carabinieri per la Biodiversità di Verona) as well as Mario Romano (Ufficio Territoriale Carabinieri per la Biodiversità di Castel di Sangro) for their valuable assistance in designing the maps of the study areas.
Special thanks for the invaluable help throughout the project development are also due to: Fabio Mazzocchi and Liana Fedrigoli (logistics and technical support, UTB – Centro Nazionale Biodiversità “Bosco Fontana”, Verona); Marco Tedeschi and Marco Giaquinta (administrative relations with the Central Bureau of the Budget Office and the Ministry of Finance, CUFTA, Office for Biodiversity, Rome); Daria Demattio and Ornella Salvagno (UTB Uffico Territoriale Biodiversità, Verona) who helped with their professional administrative assistance; Stefano Bisoffi. Olga Grasselli and Ida Marandola (CREA, Roma) who helped in many ways by promoting the administrative integration of the CREA in the Life Project.
Many thanks also to Federico Romiti for his help in re-styling some figures and to Agnese Zauli for her assistance in editorial procedures and decisions. Finally we thank the 695 citizens who voluntarily sent faunistic data on the target species of the project.
This work would not have been possible without the participation of all young researchers who worked for the project and/or collaborated in the planning and execution of the studies, in sampling activities and data processing, as well as in writing the articles of the present issue, or in dissemination and communication work: Gloria Antonini, Marco Bardiani, Stefano Chiari, Alessandro Cini, Emiliano Mancini, Michela Maura, Emanuela Maurizi, Fabio Mosconi, Lara Redolfi De Zan, Sarah Rossi de Gasperis, Simone Sabatelli, Emanuela Solano, Massimiliano Tini, Ilaria Toni, Livia Zapponi, Agnese Zauli. We also thank the students who carried out research on monitoring for their thesis of Bachelor or Master’s degrees: Francesca Bernardini, Elisabetta Bussola, Anna Cuccurullo, Giulia Leonarduzzi, Marco Molfini, Giulio Nigro, Noemi Onofrio, Emma Pellegrini and Lorenzo Piermaria. Last but not least, the whole project staff is very grateful to Stefano Vaccari (Ministry of Agriculture, Rome), Davide De Laurentis (CUTFAA, Comando Tutela Forestale Carabinieri, Roma), Stefano Bisoffi and Ida Marandola (CREA, Roma), for solving a very important problem that allowed the project to start.
With the contribution of the LIFE financial instrument of the European Union.