Nature Conservation 4: 1–13, doi: 10.3897/natureconservation.4.4499
Antarctic macrobenthic communities: A compilation of circumpolar information
Julian Gutt 1, David K. A. Barnes 2, Susanne J. Lockhart 3, Anton van de Putte 4
1 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Columbusstr., 27568, Bremerhaven, Germany
2 British Antarctic Survey, High Cross, Madingley Road, CB3 0ET, Cambridge, United Kingdom
3  NOAA Southwest Fisheries Science Center, La Jolla Shore Drive, CA 92037, La Jolla, United States
4 ANTABIF, Vautierstraat 29, B-1000 Brussels, Belgium

Corresponding author: Julian Gutt (

Academic editor: L. Penev

received 12 December 2012 | accepted 12 February 2013 | Published 19 February 2013

(C) 2013 Julian Gutt. This is an open access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

For reference, use of the paginated PDF or printed version of this article is recommended.


Comprehensive information on Antarctic macrobenthic community structure has been publicly available since the 1960s. It stems from trawl, dredge, grab, and corer samples as well as from direct and camera observations (Table 1–2). The quality of this information varies considerably; it consists of pure descriptions, figures for presence (absence) and abundance of some key taxa or proxies for such parameters, e.g. sea-floor cover. Some data sets even cover a defined and complete proportion of the macrobenthos with further analyses on diversity and zoogeography. As a consequence the acquisition of data from approximately 90 different campaigns assembled here was not standardised. Nevertheless, it was possible to classify this broad variety of known macrobenthic assemblages to the best of expert knowledge (Gutt 2007; Fig. 1). This overview does not replace statistically sound community and diversity analyses. However, it shows from where which kind of information is available and it acts as an example of the feasibility and power of such data collections. The data set provides unique georeferenced biological basic information for the planning of future coordinated research activities, e.g. under the umbrella of the biology program “Antarctic Thresholds - Ecosystem Resilience and Adaptation” (AnT-ERA) of the Scientific Committee on Antarctic Research (SCAR) and especially for actual conservation issues, e.g. the planning of Marine Protected Areas (MPAs) by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR).


Macrobenthic communities, trawls, dredges, grabs, corers, direct observations (scuba-diving, seabed video, seabed photography)

Data resources

Data published through GBIF:

Seabed images through Pangaea: (sample:

General description

Additional information: Additional files uploaded: list of references (Table 1–2) and classification of macrobenthic communities (Fig. 1).

Project details

Project title: Antarctic macrobenthic communities: A compilation of circumpolar information.

Personnel: Julian Gutt.

Taxonomic coverage

General taxonomic coverage description (for detailed information see references in Table 1): Macrobenthic communities have been uploaded in the category “vernacularNames”, abbreviations in “taxonRemarks”.

“Sessile suspension feeders and associated fauna” can be dominated by both demosponges, e.g., Cinachyra or Mycale and hexactinellid (glass) sponges. The most common genus is Rossella. The sponges include fast growing genera, such as Homaxinella or those that grow slowly, at least during the adult life stage, such as the also common hexactinellid genus Anoxycalix. The associated fauna comprises specialised predators, such as nudibranches, asteroids (especially Acodontaster conspicuous and Perknaster fuscus, which control fast growing Mycale acerata populations) and gastropods. Other fauna groups are symbionts, amphipods and other macroorganisms that prefer an epibiotic life-mode (mainly from the echinoderms, such as sedentary holothurians, ophiuroids and crinoids). If space is not monopolised by sponges, then, cnidarians (such as gorgonians, pennatularians, alconarians or hydrocorals), solitary and compound ascidians, and a variety of bryozoans can be most abundant. A recently described population of lithodid crabs is speculated to grow fast due to oceanic warming and was associated with the “mobile deposit feeders, infauna and grazers”. Other mobile epifauna assemblages can be dominated in shallow areas by the asteroid Acodontaster validus, by two species of the grazing echinoid Sterechinus, a variety of deposit feeding and scavenging ophiuroids and mobile holothurians. The infauna is comparably rare; however, polychaetes and the clams Yoldia as well as Laternula can reach high densities, especially in shallow muddy sediments. A general depth gradient exists for biomass and abundances. In addition, very low biomass and abundances are found in shallow habitats that are physically and permanently disturbed by sea-scour, in intermediately deep shelf areas that are scoured by icebergs and in extremely oligotrophic situations under or close to the ice-shelves. Intensively disturbed assemblages can be dominated by very few species, appearing to be almost "monospecific", during recolonisation by pioneers such as the ascidian Mogula pedunculata, bryozonas like Cellarinella and Cellaria or the gorgonian Primnoisis antarctica or in physically disturbed areas, where only opportunistic mobile species survive. Locally clams of the species Adamussium colbecki can live in several layers on top of each other simply due to suitable environmental conditions and low competition. Species can also become very abundant when they are better local competitors for space, such as the demosponge Cinachyra barbata, s.l. Recently, fauna-rich vent sites and far poorer seeps have been discovered.

Common names: sessile suspension feeders and associated fauna (SSFA), sessile suspension feeders and associated fauna - predator driven (SSFA-PRED), sessile suspension feeders and associated fauna - dominated by sponges (SSFA-SPO), sessile suspension feeders and associated fauna - dominated by taxa other than sponges (SSFA-OTH), mixed assemblage (MIX), very low biomass or absence of trophic guilds (VLB), “monospecific” (MONO), physically controlled (PHYCO), mobile deposit feeders, infauna and grazers (MOIN), mobile deposits feeders, infauna and grazers - infauna dominated (MOIN-INF), mobile deposit feeders, infauna and grazers - epifauna dominated (MOIN-EPI), vent (VENT), and seep (SEEP).

Spatial coverage

General spatial coverage: The study area generally covers almost the entire Southern Ocean, including single ice-shelf covered sites (Fig. 2). The vast majority of information is from shelf areas around the continent at water depth shallower than 800m. Non-ice shelf covered shelf areas can be up to 300km wide or the shelf-edge at 600 to 800m depth can “disappear” beneath the floating ice-shelf. Shallow areas (<50m) are rare because 86% of the coast-line is glaciated or consists of an ice-shelf edge. A non-glaciated coast mainly exists along the Antarctic Peninsula. The coastline is either extremely complex with bays, channels, peninsulas, islands etc. or less structured, especially where it is formed by the ice-shelf. Overdeepened basins (inner-shelf depressions) can reach >1200m water depth. Most islands exist west of the Antarctic Peninsula and along the Scotia Arc linking the Peninsula with the southern tip of South America. The coastal waters are mainly affected by the Antarctic Coastal Current (East Wind Drift), whilst the largest off-shore part of the Southern Ocean is dominated by the Antarctic Circumpolar Current (West Wind Drift) with gyres of different size. Sediments are predominantly poorly sorted but also cobble “fields”, bedrock, and pure soft sediments exist. The Antarctic marine ecosystem is shaped by a distinct seasonality of the sea-ice cover affecting a short and intensive primary production in austral summer, by predominantly stable low temperature to which most organisms are thought to be specifically adapted to, and very little terrestrial run-off. Most of the shelf-inhabiting macrobenthic species are endemic; some taxa reach above-average species richness (Clarke and Johnston 2003). Only few marine habitats are protected, most of which are small. Plans and proposals for large Marine Protected Areas (MPA’s), e.g. in East Antarctica, in the Ross and Weddell Seas, exist but require good scientific knowledge and data to be meaningful.

Coordinates: 83°0'0"S and 52°0'0"S Latitude; 180°0'0"W and 180°0'0"E Longitude.

Temporal coverage: March 1, 1956–February 21, 2010.


Method step description: Attribution of the information from the different sources (for references see Table 1, for hyperlinks see Table 2) to the classified macrobenthic assemblages (Fig. 1) was done to the best of expert knowledge. This was done for the entire data set simultaneously and the results were made publically available for the first time via the database “Antarctic Biodiversity Facility” (ANTABIF). The principal parameter on which theses assumptions have been made was biomass or a proxy for biomass such as sea-floor coverage. Some information on benthic functioning is also included directly or indirectly, e.g. predation, competition, succession after iceberg scouring, epi-biotic life-mode and oligotrophic conditions under ice shelves. The source publications listed (Table 1) comprise descriptions of catches, other observations, and data on fauna and were mainly from historical and modern peer-reviewed articles. Other information sources were seabed videos and still images together with associated meta-data (Table 2). All the latter source material has an associated DOI and is available at the database PANGAEA ( ).

Study extent description: Southern Ocean with emphasize on coastal shelf areas and some islands without specific temporal patterns of sampling.

Sampling description: This project aggregates data from various expeditions with a full range of benthic sampling methods, such as grabs, corers, dredges, and trawls as well as non-invasive observations by scuba divers, stationary, towed, or ROV-based still and video-cameras. For detail descriptions see original publications in journals (Table 1) or data repositories (Table 2).

Quality control description: A first version of the classification of the macrobenthic communities had been published in a peer-reviewed journal (Gutt 2007). A modified version had been published in the Antarctic Climate Change and the Environment report (ACCE, Turner et al. 2009). The actual version is depicted in Fig. 1. Data presented here is available at ANTABIF/SCAR-MarBIN and will contribute to the biogeographic atlas project of SCAR and the Census of Marine Life (De Broyer et al. in prep.), ).

Table 1.

References of results and data used for the compilation of information on Antarctic macro-benthic communities presented in this article.

Arnaud P (1974) Contribution a la bionomie marine benthique des régions antarctiques et subantarctiques. Téthys 6: 1–464.
Azam F, Beers JR, Campbell L, Carlucci AF, Holm-Hansen O, Reis FMH, Karl DM (1979) Occurrence and metabolic activity of organisms under the Ross Ice Shelf, Antarctica, at station J9. Science 203: 451–453.
Bannasch R, Feiler K, Rauschert M (1984) Fortsetzung der biologischen Untersuchungen im Gebiet der sowietischen Antarktisstation Bellingshausen. Geodätische und geophysikalische Veröffentlichungen, Reihe 1, Heft 11: 37–55.
Barnes DKA (1995a) Sublittoral epifaunal communities at Signy Island, Antarctica. I. The ice-foot zone. Marine Biology 121: 555–563.
Barnes DKA (1995b) Sublittoral epifaunal communities at Signy Island, Antarctica. II. Below the ice-foot zone. Marine Biology 121: 565–572.
Barnes DKA, Clarke A (1995) Epibiotic communities on sublittoral macroinvertebrates at Signy Island, Antarctica. Journal of the Marine Biological Association of the United Kingdom 75: 689–703.
Barry JP, Dayton PK (1988) Current patterns in McMurdo Sound, Antarctica and their relationship to local biotic communities. Polar Biology 8: 367–376.
Barthel D, Gutt J (1992) Sponge associations in the eastern Weddell Sea. Antarctic Science 4: 137–150.
Beaman RJ, O’Brien PE (2009) Collaborative East Antarctic Marine Census (CEAMARC): Post-Survey Report, RSV Aurora Australis Voyage 3, December 2007 - January 2008. Geoscience Australia Record 2008/05, 61 pp.
Bellisio NB, Lopez RB, Tomo AP (1972) Distribucion vertical de la fauna benthonica en tres localidades antarticas: Bahia Esperanza, Isla Petermann y Archipelago Melchior. Contribucion Instituto Antarctico Argentino 142: 1–89.
Belyaev GM, Ushakov PV (1957) Certain regularities in the quantitative distribution of the bottom fauna in Antarctic waters. Doklady Akademii Nauk SSSR 112: 137–140.
Bowden DA, Schiaparelli S, Clark MR, Rickard GJ (2011) A lost world? Archaic crinoid-dominated assemblages on an Antarctic seamount. Deep-Sea Research II 58: 119–127.
Bruchhausen PM, Raymond JA, Jacobs SS, DeVries AL, Thorndike EM, DeWitt HH (1979) Fish, crustaceans, and the sea floor under the Ross Ice Shelf. Science 203: 449–451.
Bullivant JS (1967) Ecology of the Ross Sea benthos. Bulletin of the New Zealand Department of Scientific and Industrial Research 176: 49–78.
Castellanos ZJA de (1973) Estratificacion del complejo benthonico de invertebrados en Puerto Paraiso (Antartida). Contribucion del Instituto Antarctico Argentino 164: 4–23.
Cattaneo-Vietti R, Chiantore M, Albertelli G (1997) The population structure and ecology of the Antarctic scallop Adamussium colbecki (Smith, 1902) at Terra Nova Bay (Ross Sea, Antarctica). Scientia Marina, Supl. 2: 15–24.
Cattaneo-Vietti R, Chiantore M, Gambi MC, Albertelli G, Cormaci M, Di Geronimo I (2000a) Spatial and vertical distribution of benthic littoral communities in Terra Nova Bay. In: Faranda FM, Guglielmo L, Ionora A (Eds) Ross Sea Ecology. Springer, Berlin, 503–514.
Cattaneo-Vietti R, Bavestrello G, Cerrano C, Gaino E, Mazzella L, Pansini M, Sarà M (2000b) The role of sponges in the Terra Nova Bay ecosystem. In: Faranda FM, Guglielmo L, Ionora A (Eds) Ross Sea Ecology. Springer, Berlin, 539–549.
Cerrano C, Bavestrello G, Calcinai B, Cattaneo-Vietti R, Sarà A (2000) Asteroids eating sponges from Tethys Bay, East Antarctica. Antarctic Science 12: 425–426.
Chiantore M, Cattaneo-Vietti R, Berkman PA, Nigro M, Vacchi M, Schiaparelli H, Albertelli G (2001) Antarctic scallop (Adamussium colbecki) spatial population variability along the Victoria Land Coast, Antarctica. Polar Biology 24: 139–143.
Cranmer TL, Ruhl HA, Baldwin RJ, Kaufmann RS (2003) Spatial and temporal variation in the abundance, distribution and population structure of epibenthic megafauna in Port Foster, Deception Island. Deep-Sea Research II 50: 1821–1842.
Davis RW, Castellini MA, Horning M, Davis MP (1983) Maintenance of an observation hole through the McMurdo Ice Shelf for winter oceanography. Antarctic Journal of the United States 18: 12–14.
Dayton PK (1979) Observations on growth, dispersal and population dynamics of some sponges in McMurdo Sound, Antarctica. Colloques internationaux du Centre national de la recherche scientifique 291: 271–282.
Dayton PK, Oliver JS (1977) Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science 197: 55–58.
Dayton PK, Kooyman GL, Barry JP (1984) Benthic life under thick ice. Antarctic Journal of the United States 19: 128.
Dayton PK, Robillard GA, Paine RT (1970) Benthic faunal zonation as a result of anchor ice at McMurdo Sound Antarctica. In: Holdgate MW (Ed) Antarctic Ecology. Academic Press, New York, 244–258.
Dayton PK, Robilliard GA, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs 44: 105–128.
Domack E, Ishman S, Leventer A, Sylva S, Willmott V, Huber B (2005) A chemotrophic ecosystem found beneath Antarctic ice shelf. EOS 86 (269): 271–272.
Drescher HE, Hubold G, Piatkowski U, Plötz J, Voß J (1983) Das biologische Programm der ANTARKTIS-I-Expedition mit FS “Polarstern”. Reports on Polar Research 12: 1–34.
Everitt DA, Poore GCB, Pickard J (1980) Marine benthos from Davis Station, east Antarctica. Australian Journal of Freshwater Research 31: 829–836.
Gallardo VA, Castillo JG, Retamal MA, Yáñez A, Moyano HI, Hermosilla JG (1977) Quantitative studies on the soft-bottom macrobenthic animal communities of shallow Antarctic bays. In: Llano GA (Ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington, DC, 361–387.
Gerdes D, Klages M, Arntz WE, Herman RL, Galéron J, Hain S (1992) Quantitative investigations on macrobenthos communities of the southeastern Weddell Sea shelf based on multibox corer samples. Polar Biology 12: 291–301.
Gruzov EN, Pushkin AF (1970) Bottom communities of the upper sublittoral of Enderby Land and the South Shetlands. In: Holdgate MW (Ed) Antarctic Ecology, Vol. 1., Academic Press, London, 235–238.
Gruzov EN, Propp MV, Pushkin AF (1968) Biological associations of coastal areas of the Davis Sea (based on the observations of divers). Soviet Antarctic Expedition Information Bulletin 6(6): 523–533.
Gutt J, Piepenburg D (1991) Dense aggregations of deep-sea holothurians in the southern Weddell Sea, Antarctica. Marine Ecology Progress Series 68: 277–285.
Gutt J, Starmans A (1998) Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Polar Biology 20: 229–247.
Gutt J (2007) Antarctic macro-zoobenthic communities: a review and an ecological classification. Antarctic Science 19: 165–182.
Gutt J, Koubbi P, Eléaume M (2007) Mega-epibenthic diversity off Terre Adélie (Antarctica) in relation to disturbance. Polar Biology 30: 1323–1329.
Gutt J, Barratt I, Domack E, d›Udekem d›Acoz C, Dimmler W, Grémare A, Heilmayer O, Isla E, Janussen D, Jorgensen E, Kock K-H, Lehnert LS, López-Gonzáles P, Langner S, Linse K, Manjón-Cabeza ME, Meißner M, Montiel A, Raes M, Robert H, Rose A, Sañé-Schepisi E, Saucède T, Scheidat M, Schenke H-W, Seiler J, Smith C (2010) Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Research II 58: 74–83.
Hamada E, Numanami H, Naito Y, Taniguchi A (1986) Observation on the marine benthic organisms at Syowa Station in Antarctica using a remotely operated vehicle. Memoirs of National Institute of Polar Research (Japan) 40: 289–298.
Jazdzewski K, Juraz W, Kittel W, Presler E, Presler P, Sicinski J (1986) Abundance and biomass estimates of the benthic Fauna in Admiralty Bay, King George Island, South Shetland Islands. Polar Biology 6: 5–16.
Jazdzewski K, De Broyer C, Pudlarz M, Zielinski D (2001) Seasonal fluctuations of vagile benthos in the uppermost sublittoral of a maritime Antarctic fjord. Polar Biology 24: 910–917.
Jones CD, Lockhart SJ (2011) Detecting Vulnerable Marine Ecosystems in the Southern Ocean using research trawls and underwater imagery. Marine Policy 35(5): 7732–736.
Jones DOB (2005) Ecological controls on density, diversity and community structure of polar megabenthos. PhD thesis, Southampton, UK: University of Southampton.
Kirkwood JM, Burton HR (1988) Macrobenthic species assemblages in Ellis Fjord, Vestfold Hills, Antarctica. Marine Biology 97: 445–457.
Kohnen H (1984) Die Expedition ANTARKTIS-II mit FS ‘Polarstern’ 1983/84. Reports on Polar Research 19: 1–185.
Lipps JH, Ronan TE Jr, DeLaca TE (1979) Life below the Ross Ice Shelf, Antarctica. Science 203: 447–449.
Littlepage JL, Pearse JS (1962) Biological and oceanographic observations under an Antarctic ice shelf. Science 137: 679–681.
Lockhart SJ, Jones CD (2008) Biogeographic patterns of benthic invertebrate megafauna on shelf areas within the Southern Ocean Atlantic sector. CCAMLR Science 15: 167–192.
Lovell LL, Trego KD (2003) The epibenthic megafaunal and benthic infaunal invertebrates of Port Foster, Deception Island (South Shetland Islands, Antarctica). Deep-Sea Research II 50: 1799–1819.
Lowry JK (1975) Soft bottom macrobenthic community of Arthur Harbor, Antarctica. Antarctic Research Series 23: 1–19.
Nakajima Y, Watanabe K, Naito Y (1982) Diving observations of the marine benthos at Syowa station, Antarctica. Memoirs of the National Institute of Polar Research (Japan), Special Issue 23: 44–54.
Niemann H, Fischer D, Graffe D, Knittel K, Montiel A, Heilmayer O, Nöthen K, Pape T, Kasten S, Bohrmann G, Boetius A, Gutt J (2009) Biogeochemistry of a low-activity cold seep in the Larsen B area, western Weddell Sea, Antarctica. Biogeosciences 6: 2383–2395.
Oliver JS, Slattery PN (1985) Effects of crustacean predators on species composition and population structure of soft-bodied infauna from McMurdo Sound, Antarctica. Ophelia 24: 155–175.
Oliver JS, Watson DJ, O›Connor EF, Dayton PK (1976) Benthic communities of McMurdo Sound. Antarctic Journal of the U.S. 11: 58–549.
Pabis K, Sicinski J, Krymarys M (2011) Distribution patterns in the biomass of macrozoobenthic communities in Admiralty Bay (King George Island, South Shetlands, Antarctic). Polar Biology 34: 489–500.
Piepenburg D, Voß J, Gutt J (1997) Assemblages of sea stars (Echinodermata: Asteroidea) and brittle stars (Echinodermata: Ophiuroidea) in the Weddell Sea (Antarctica) and off Northeast Greenland (Arctic): a comparison of diversity and abundance. Polar Biology 17: 305–322.
Post AL, Hemer MA, O›Brien PE, Roberts D, Craven M (2007) History of benthic colonisation beneath the Amery Ice Shelf, East Antarctica. Marine Ecology Progress Series 344: 29–37.
Post AL, O›Brien PE, Beaman RJ, Riddle MJ, de Santis L (2010a) Physical controls on deep water coral communities on the George V Land slope, East Antarctica. Antarctic Science 22: 371–378.
Post AL, Beaman RJ, O›Brien PE, Eléaume M, Riddle MJ (2011) Community structure and benthic habitats across the George V Shelf, East Antarctica: trends through space and time. Deep-Sea Research II 58: 105–118.
Propp MV (1977) The study of bottom fauna at Haswell Island by scuba diving. In: Holdgate MW (Ed) Antarctic Ecology, Vol. 1., Academic Press, London, 239–241.
Raguá-Gil JM, Gutt J, Clarke A, Arntz WE (2004) Antarctic shallow-water mega-epibenthos: shaped by circumpolar dispersion or local conditions? Marine Biology 144: 829–839.
Rehm P, Hooke RA, Thatje S (2011) Macrofaunal communities on the continental shelf off Victoria Land, Ross Sea, Antarctica. Antarctic Science 23: 449–455.
Riddle MJ, Craven M, Goldsworthy PM, Carsey F (2007) A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica. Paleoceanography 22, doi: 10.1029/2006PA001327
Rogers AD, Tyler PA, Connelly DP, Copley JT, James R, Larter RD, Linse K, Mills RA, Naveira Garabato A, Pancost RD, Pearce DA, Polunin NVC, German CR, Shank T, Boersch-Supan PH, Alker BJ, Aquilina A, Bennett SA, Clarke A, Dinley RJJ, Graham AGC, Green DRH, Hawkes JA, Hepburn L, Hilario A, Huvenne VAI, Marsh L, Ramirez-Llodra E, Reid WDK, Roterman CN, Sweeting CJ, Thatje S, Zwirglmaier K (2012) The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography. PLoS Biology 10(1): e1001234. doi: 10.1371/journal.pbio.1001234
Sahade R, Tatián M, Kowalke J, Kühne S, Esnal GB (1998) Benthic faunal associations on soft substrates at Potter Cove, King George Island, Antarctic. Polar Biology 19: 85–91.
Saiz JI, García FJ, Manjón-Cabeza ME, Parapar J, Peña-Cantero A, Saucède T, Troncoso JS, Ramos A (2008) Community structure and spatial distribution of benthic fauna in the Bellingshausen Sea (West Antarctica). Polar Biology 31: 735–743 (only stations <1000m considered).
Sicinski J, Pabis K, Jazdzewski K, Konopacka A, Blazewicz-Paszkowycz M (2011) Macrobenthos of two Antarctic glacial covres: a comparison with non-disturbed bottom areas. Polar Biology 35: 355–367.
Smith CR, Grange LJ, Honig DL, Naudts L, Huber B, Guidi L, Domack E (2012) A large population of king crabs in Palmer Deep on the west Antarctic Peninsula shelf and potential invasive impacts. Proceedings of the Royal Society B, Biological Sciences 279: 1017–1026.
Starmans A, Gutt J, Arntz WE (1999) Mega-epibenthic communities in Arctic and Antarctic shelf areas. Marine Biology 135: 269–280.
Teixidó N, Garrabou J, Arntz WE (2002) Spatial pattern quantification of Antarctic benthic communities using landscape indices. Marine Ecology Progress Series 242: 1–14.
Sumida PYG, Bernardino AF, Stedall VP, Glover AG, Smith CR (2008) Temporal changes in benthic megafaunal abundance and composition across the West Antarctic Peninsula shelf: Results from video surveys. Deep-Sea Research II 55: 2465–2477.
Teixidó N, Garrabou J, Gutt J, Arntz WE (2004) Recovery in Antarctic benthos after iceberg disturbance: trends in benthic composition, abundance, and growth forms. Marine Ecology Progress Series 278: 1–16.
Teixidó N, Garrabou J, Gutt J, Arntz WE (2007) Iceberg disturbance and successional spatial patterns: the case of the shelf Antarctic benthic communities. Ecosystems 10: 142–157.
Voß J (1988) Zoogeographie und Gemeinschaftsanalyse des Makrozoobenthos des Weddellmeeres (Antarktis). Berichte zur Polarforschung 45: 1–145.
Watters G, Bergström B, Gutt J, Petterson J-O, Rosenberg J, Setran A, Valenzuela C (1995) 9. Leg III: Crab and epifaunal surveys of bays, anchorages, and fjords around South Georgia. AMLR 1994/95 Field Season Report, Administrative Report LJ-95–13, National Oceanic and Atmospheric Administration, Southwest Fisheries Science Center, Antarctic Ecosystem Research Group, 113–130.
Zamorano JH (1983) Zonación y Biomasa de la macrofauna bentónica en Bahía South, Archipiélago de Palmer, Antártica. Serie cientifica. Instituto Antarctico Chileno 30: 27–38.
Table 2.

Hyperlinks (DataCite DOIs), which provide access to seabed images and metadata from single stations where the images have been taken. The macrobenthos depicted in these images was classified and used for the compilation of information on Antarctic macro-benthic communities presented in this article.

doi: 10.1594/PANGAEA.702075
doi: 10.1594/PANGAEA.702059
doi: 10.1594/PANGAEA.702076
doi: 10.1594/PANGAEA.702077
doi: 10.1594/PANGAEA.702062
doi: 10.1594/PANGAEA.702078
doi: 10.1594/PANGAEA.702064
doi: 10.1594/PANGAEA.702065
doi: 10.1594/PANGAEA.702066
doi: 10.1594/PANGAEA.702067
doi: 10.1594/PANGAEA.702079
doi: 10.1594/PANGAEA.702069
doi: 10.1594/PANGAEA.702070
doi: 10.1594/PANGAEA.702080
doi: 10.1594/PANGAEA.702072
doi: 10.1594/PANGAEA.702073
doi: 10.1594/PANGAEA.702074
doi: 10.1594/PANGAEA.770359
doi: 10.1594/PANGAEA.198690
doi: 10.1594/PANGAEA.198691
doi: 10.1594/PANGAEA.198692
doi: 10.1594/PANGAEA.198693
doi: 10.1594/PANGAEA.198694
doi: 10.1594/PANGAEA.198695
doi: 10.1594/PANGAEA.198696
doi: 10.1594/PANGAEA.198697
doi: 10.1594/PANGAEA.198698
doi: 10.1594/PANGAEA.198699
doi: 10.1594/PANGAEA.198667
doi: 10.1594/PANGAEA.198668
doi: 10.1594/PANGAEA.198669
doi: 10.1594/PANGAEA.198670
doi: 10.1594/PANGAEA.198671
doi: 10.1594/PANGAEA.198672
doi: 10.1594/PANGAEA.198673
doi: 10.1594/PANGAEA.198674
doi: 10.1594/PANGAEA.198675
doi: 10.1594/PANGAEA.198676
doi: 10.1594/PANGAEA.198677
doi: 10.1594/PANGAEA.198678
doi: 10.1594/PANGAEA.198679
doi: 10.1594/PANGAEA.198680
doi: 10.1594/PANGAEA.198681
doi: 10.1594/PANGAEA.198682
doi: 10.1594/PANGAEA.206413
doi: 10.1594/PANGAEA.198683
doi: 10.1594/PANGAEA.198684
doi: 10.1594/PANGAEA.198685
doi: 10.1594/PANGAEA.198686
doi: 10.1594/PANGAEA.198687
doi: 10.1594/PANGAEA.198688
doi: 10.1594/PANGAEA.198689
doi: 10.1594/PANGAEA.250203
doi: 10.1594/PANGAEA.250204
doi: 10.1594/PANGAEA.250205
doi: 10.1594/PANGAEA.250206
doi: 10.1594/PANGAEA.250207
doi: 10.1594/PANGAEA.250208
doi: 10.1594/PANGAEA.250209
doi: 10.1594/PANGAEA.250210
doi: 10.1594/PANGAEA.250211
doi: 10.1594/PANGAEA.250212
doi: 10.1594/PANGAEA.250213
doi: 10.1594/PANGAEA.250214
doi: 10.1594/PANGAEA.250215
doi: 10.1594/PANGAEA.250216
doi: 10.1594/PANGAEA.250217
doi: 10.1594/PANGAEA.250218
doi: 10.1594/PANGAEA.250219
doi: 10.1594/PANGAEA.198643
doi: 10.1594/PANGAEA.198646
doi: 10.1594/PANGAEA.198644
doi: 10.1594/PANGAEA.198645
doi: 10.1594/PANGAEA.198647
doi: 10.1594/PANGAEA.198648
doi: 10.1594/PANGAEA.198649
doi: 10.1594/PANGAEA.198650
doi: 10.1594/PANGAEA.198653
doi: 10.1594/PANGAEA.198654
doi: 10.1594/PANGAEA.198656
doi: 10.1594/PANGAEA.198657
doi: 10.1594/PANGAEA.198655
doi: 10.1594/PANGAEA.198658
doi: 10.1594/PANGAEA.198659
doi: 10.1594/PANGAEA.198660
doi: 10.1594/PANGAEA.198661
doi: 10.1594/PANGAEA.198662
doi: 10.1594/PANGAEA.198663
doi: 10.1594/PANGAEA.198664
doi: 10.1594/PANGAEA.198665
doi: 10.1594/PANGAEA.198666
doi: 10.1594/PANGAEA.757741
doi: 10.1594/PANGAEA.757740
doi: 10.1594/PANGAEA.227308
doi: 10.1594/PANGAEA.227309
doi: 10.1594/PANGAEA.227310
doi: 10.1594/PANGAEA.227311
doi: 10.1594/PANGAEA.666972
doi: 10.1594/PANGAEA.666973
doi: 10.1594/PANGAEA.666974
doi: 10.1594/PANGAEA.666975
doi: 10.1594/PANGAEA.666976
doi: 10.1594/PANGAEA.666977
doi: 10.1594/PANGAEA.666978
doi: 10.1594/PANGAEA.666979
doi: 10.1594/PANGAEA.666980
doi: 10.1594/PANGAEA.666981
doi: 10.1594/PANGAEA.666982
doi: 10.1594/PANGAEA.666983
doi: 10.1594/PANGAEA.666984
doi: 10.1594/PANGAEA.666986
doi: 10.1594/PANGAEA.666991
doi: 10.1594/PANGAEA.666992
doi: 10.1594/PANGAEA.666993
doi: 10.1594/PANGAEA.666994
doi: 10.1594/PANGAEA.666995
doi: 10.1594/PANGAEA.666996
doi: 10.1594/PANGAEA.666997
doi: 10.1594/PANGAEA.227670
doi: 10.1594/PANGAEA.220741
doi: 10.1594/PANGAEA.220742
doi: 10.1594/PANGAEA.220743
doi: 10.1594/PANGAEA.220744
doi: 10.1594/PANGAEA.220745
doi: 10.1594/PANGAEA.220746
doi: 10.1594/PANGAEA.220747
doi: 10.1594/PANGAEA.319912
doi: 10.1594/PANGAEA.319913
doi: 10.1594/PANGAEA.319914
doi: 10.1594/PANGAEA.319915
doi: 10.1594/PANGAEA.319917
doi: 10.1594/PANGAEA.319918
doi: 10.1594/PANGAEA.319916
doi: 10.1594/PANGAEA.319919
doi: 10.1594/PANGAEA.319920
doi: 10.1594/PANGAEA.319894
doi: 10.1594/PANGAEA.319895
doi: 10.1594/PANGAEA.319896
doi: 10.1594/PANGAEA.319897
doi: 10.1594/PANGAEA.319898
doi: 10.1594/PANGAEA.319899
doi: 10.1594/PANGAEA.319900
doi: 10.1594/PANGAEA.319901
doi: 10.1594/PANGAEA.319902
doi: 10.1594/PANGAEA.319903
doi: 10.1594/PANGAEA.319904
doi: 10.1594/PANGAEA.319905
doi: 10.1594/PANGAEA.319906
doi: 10.1594/PANGAEA.319907
doi: 10.1594/PANGAEA.319908
doi: 10.1594/PANGAEA.319909
doi: 10.1594/PANGAEA.319910
doi: 10.1594/PANGAEA.319888
doi: 10.1594/PANGAEA.319889
doi: 10.1594/PANGAEA.319890
doi: 10.1594/PANGAEA.319891
doi: 10.1594/PANGAEA.319892
doi: 10.1594/PANGAEA.319893
doi: 10.1594/PANGAEA.667009
doi: 10.1594/PANGAEA.667008
doi: 10.1594/PANGAEA.667010
doi: 10.1594/PANGAEA.667011
doi: 10.1594/PANGAEA.667012
doi: 10.1594/PANGAEA.667013
doi: 10.1594/PANGAEA.667014
doi: 10.1594/PANGAEA.667015
doi: 10.1594/PANGAEA.667016
doi: 10.1594/PANGAEA.667017
doi: 10.1594/PANGAEA.667018
doi: 10.1594/PANGAEA.667019
doi: 10.1594/PANGAEA.667020
doi: 10.1594/PANGAEA.667021
doi: 10.1594/PANGAEA.667022
doi: 10.1594/PANGAEA.667023
doi: 10.1594/PANGAEA.667024
doi: 10.1594/PANGAEA.667025
doi: 10.1594/PANGAEA.667026
doi: 10.1594/PANGAEA.667027
doi: 10.1594/PANGAEA.667028
doi: 10.1594/PANGAEA.667029
doi: 10.1594/PANGAEA.667030
doi: 10.1594/PANGAEA.667031
doi: 10.1594/PANGAEA.667032
doi: 10.1594/PANGAEA.691559
doi: 10.1594/PANGAEA.691560
doi: 10.1594/PANGAEA.740036
doi: 10.1594/PANGAEA.691561
doi: 10.1594/PANGAEA.691562
doi: 10.1594/PANGAEA.691563
doi: 10.1594/PANGAEA.691564
doi: 10.1594/PANGAEA.691565
doi: 10.1594/PANGAEA.691566
doi: 10.1594/PANGAEA.691567
doi: 10.1594/PANGAEA.691568
doi: 10.1594/PANGAEA.691569
doi: 10.1594/PANGAEA.691570
doi: 10.1594/PANGAEA.691571
doi: 10.1594/PANGAEA.691572
doi: 10.1594/PANGAEA.691573
doi: 10.1594/PANGAEA.691574
doi: 10.1594/PANGAEA.691575
doi: 10.1594/PANGAEA.691576
doi: 10.1594/PANGAEA.691577
doi: 10.1594/PANGAEA.691578
doi: 10.1594/PANGAEA.691579
doi: 10.1594/PANGAEA.691580
doi: 10.1594/PANGAEA.691581
doi: 10.1594/PANGAEA.691545
doi: 10.1594/PANGAEA.691546
doi: 10.1594/PANGAEA.691547
doi: 10.1594/PANGAEA.691548
doi: 10.1594/PANGAEA.691549
doi: 10.1594/PANGAEA.691550
doi: 10.1594/PANGAEA.691551
doi: 10.1594/PANGAEA.691552
doi: 10.1594/PANGAEA.691553
doi: 10.1594/PANGAEA.691554
doi: 10.1594/PANGAEA.691555
doi: 10.1594/PANGAEA.691556
doi: 10.1594/PANGAEA.691557
doi: 10.1594/PANGAEA.691558
doi: 10.1594/PANGAEA.713323
doi: 10.1594/PANGAEA.713324
doi: 10.1594/PANGAEA.713325
doi: 10.1594/PANGAEA.713326
doi: 10.1594/PANGAEA.713327
doi: 10.1594/PANGAEA.713328
doi: 10.1594/PANGAEA.713329
doi: 10.1594/PANGAEA.713330
doi: 10.1594/PANGAEA.713331
doi: 10.1594/PANGAEA.713332
Figure 1.

Classification of Antarctic macro-benthic communities (after Gutt 2007 and Turner et al. 2009).

Figure 2.

Geographic coverage of the circumpolar distribution of information on Antarctic macrobenthic communities provided by ANTABIF.

Dataset description

Object name: Darwin Core Archive Antarctic macrobenthic communities: A compilation of circumpolar information

Character encoding: UTF-8

Format name: Darwin Core Archive format

Format version: 1.0


Publication date of data: 2012-07-19

Language: English

Licenses of use: This data-set is entitled “Antarctic macrobenthic communities: A compilation of circumpolar information” and has been uploaded to (ANTABIF). The data set has been made available under the Open Data Commons Attribution License:

Metadata language: English

Date of metadata creation: 2012-07-19

Hierarchy level: Dataset


Thanks are due to all who provided data for this compilation.

De Broyer C, Koubbi P, Danis B, David B, Grant S, Griffiths H, Gutt J, Held C, Huettmann F, Post A, Ropert-Coudert Y (in prep.) The CAML / SCAR-MarBIN Biogeography Atlas of the Southern Ocean.
Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanography and Marine Biology: an Annual Review 41: 47-114.
Gutt J (2007) Antarctic macro-zoobenthic communities: a review and an ecological classification. Antarctic Science 9: 165-182. doi: 10.1017/S0954102007000247
Turner J, Bindschadler R, Convey P, di Prisco G, Fahrbach E, Gutt J, Hodgson D, Mayewsky P, Summerhayes C (2009) Antarctic Climate Change and the Environment. SCAR, Scott Polar Research Institute, Cambridge, 526 pp.